1/1.2+1/2.3+...+1/1980.1990+...+2/2006.2007
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+.....+\dfrac{1}{2006.2007}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{2006}-\dfrac{1}{2007}\)
\(=1-\dfrac{1}{2007}=\dfrac{2006}{2007}\)
\(1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2016\cdot2017}+\frac{1}{2017\cdot2018}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}+\frac{1}{2017}-\frac{1}{2018}\)
\(=2-\frac{1}{2018}\)
\(=\frac{1009}{2018}-\frac{1}{2018}\)
\(=\frac{1008}{2018}=\)TỰ RÚT GỌN NHA
\(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2006.2007}+\frac{1}{2007.2008}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2007}-\frac{1}{2008}\)
\(=2-\frac{2007}{2008}\)
\(=\frac{2009}{2008}\)
~Học tốt~
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2006\cdot2007}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2006}-\frac{1}{2007}=1-\frac{1}{2007}=\frac{2006}{2007}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2006.2007}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{2006}-\frac{1}{2007}\)
=\(1-\frac{1}{2007}\)
=\(\frac{2006}{2007}\)
\(C=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2006}-\frac{1}{2007}\)
\(C=1+0+0+...+0-\frac{1}{2007}\)
\(C=1-\frac{1}{2007}\)
\(C=\frac{2006}{2007}\)
\(L_1=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{2015.2016.2017}\)
\(L_1=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{2015.2016}-\dfrac{1}{2016.2017}\right)\)
\(L_1=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2016.2017}\right)\)
\(L_1=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2016.2017}\right)\)
\(L_1=\dfrac{1}{4}-\dfrac{1}{2.2016.2017}\)
\(L_2=1.2+2.3+...+2006.2007\)
\(3L_2=1.2.3+2.3.\left(4-1\right)+...+2006.2007.\left(2008-2005\right)\)
\(3L_2=1.2.3+2.3.4-1.2.3+...+2006.2007.2008-2005.2006.2007\)\(3L_2=2006.2007.2008\)
\(L_2=\dfrac{2006.2007.2008}{3}\)
\(pt\Leftrightarrow\left(\dfrac{1}{4}-\dfrac{1}{2.2016.2017}\right).x=\dfrac{2006.2007.2008}{3}\)
Dễ dàng tìm được x nhé
Bài này không tính nhé tth nghĩ nát óc mới ra :3
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2005.2006.2007}\right)x=1.2\left(3-0\right)+2.3\left(4-1\right)+...+2006+2007\left(2008-2005\right)\)\(3\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2005.2006.2007}\right)x=2\left(1.2\left(3-0\right)+2.3+...+2006+2007\right)\)
\(2\left(1.2.3+2.3.4-1.2.3+...+2006+2007.2008-2005.2006.2007\right)\)
Đến đây rồi tự làm tiếp đi nhé
ta đặt: A = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 +...+ 1/2005.2006.2007
2.A = 2(1/1.2.3 + 1/2.3.4 + 1/3.4.5 +...+ 1/2005.2006.2007)
2.A = 2/1.2.3 + 2/2.3.4 + 2/3.4.5 +...+ 2/2005.2006.2007
= (1/1.2 - 1/2.3) + (1/2.3 - 1/3.4) +...+ (1/2005.2006- 1/2006.2007)
= 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + ... +1/2005.2006 - 1/2006.2007
= 1/1.2 - 1/2006.2007
=> A = (1/1.2 - 1/2006.2007):2
A = 1/4 - 1/1003.2007
Đặt B = 1/1.2 + 1/2.3+ 1/ 3.4 ..... + 1/2006.2007
=(1/1-1/2)+(1/2-1/3)+(1/3-1/4)+....+(1/2006-1/2007)
=1/1-1/2+1/2-1/3+1/3-1/4+....+1/2006-1/2007
=1/1-1/2007
= 2006/2007
thay vào phương trình ta có phương trình trở thành:
(1/4 - 1/1003.2007).x = 2006/2007
..........
còn lại bạn tính nhé
Ta có:
\(\frac{2}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3}\); \(\frac{2}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4}\); ...; \(\frac{2}{2005.2006.2007}=\frac{1}{2005.2006}-\frac{1}{2006.2007}\)
\(A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2005.2006}-\frac{1}{2006.2007}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2006.2007}\right)\)
\(A=\frac{1}{2}\left(\frac{1003.2007-1}{2006.2007}\right)\)
B=1.2+2.3+3.4+...+2006.2007=\(\frac{2006.2007.2008}{3}\)
Ta có: A.x=B => x=B:A = \(\frac{2006.2007.2008}{3}:\left\{\frac{1}{2}.\frac{1003.2007-1}{2006.2007}\right\}=\frac{2006.2007.2008}{3}.\frac{2.2006.2007}{1003.2007-1}\)
=> \(x=\frac{2.2006^2.2007^2.2008}{6039060}=2676.2007^2\)
Đặt \(NCTK=VT\)
\(\Rightarrow2NCTK=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...\)
\(+\frac{1}{2005.2006}-\frac{1}{2006.2007}\)
\(\Rightarrow2NCTK=\frac{1}{2}-\)\(\frac{1}{2006.2007}\)
\(\Rightarrow NCTK=\frac{1}{4}-\frac{1}{2.2006.2007}\)
Đặt \(KN=1.2+2.3+...+2006.2007\)
\(3KN=1.2.3+2.3.\left(4-1\right)+...+2006.2007\left(2008-2005\right)\)
\(=2006.2007.2008\)
\(KN=\frac{2006.2007.2008}{3}\)
...
ta đặt: A = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 +...+ 1/2005.2006.2007
2.A = 2(1/1.2.3 + 1/2.3.4 + 1/3.4.5 +...+ 1/2005.2006.2007)
2.A = 2/1.2.3 + 2/2.3.4 + 2/3.4.5 +...+ 2/2005.2006.2007
= (1/1.2 - 1/2.3) + (1/2.3 - 1/3.4) +...+ (1/2005.2006- 1/2006.2007)
= 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + ... +1/2005.2006 - 1/2006.2007
= 1/1.2 - 1/2006.2007
=> A = (1/1.2 - 1/2006.2007):2
A = 1/4 - 1/1003.2007
Đặt B = 1/1.2 + 1/2.3+ 1/ 3.4 ..... + 1/2006.2007
=(1/1-1/2)+(1/2-1/3)+(1/3-1/4)+....+(1/2006-1/2007)
=1/1-1/2+1/2-1/3+1/3-1/4+....+1/2006-1/2007
=1/1-1/2007 = 2006/2007
thay vào ta được phương trình trở thành:
(1/4 - 1/1003.2007).x = 2006/2007
..........
Em xem lại đề nhé. Các phân số này không có quy luật nên không tính được