tính tổng s . S= 1+9+9^2+...+9^2017
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=1+9+92+93+...+92017
9S =(90+9+92+93+...+92017).2
9S =9+92+93+94+...+92017+92018
9S-S =(9+92+93+94+...+92017+92018)-(90+9+92+93+...+92017)
8S =92018-90
S =(92018-90):8
\(S=1+9+9^2+...+9^{2017}\)
\(\Rightarrow9S=9+9^2+9^3+...+9^{2018}\)
\(\Rightarrow9S-S=8S=\left(9+9^2+9^3+...+9^{2018}\right)-\left(1+9+9^2+...+9^{2017}\right)\)
\(8S=9^{2018}-1\)
\(\Rightarrow S=\frac{9^{2018}-1}{8}\)
\(S=1+9+9^2+....+9^{2017}\)
\(9S=9.\left(1+9+9^2+...+9^{2017}\right)\)
\(9S=9+9^2+9^3+...+9^{2018}\)
\(8S=9S-S=\left(9+9^2+9^3+...+9^{2018}\right)-\left(1+9+9^2+....+9^{2017}\right)\)
\(8S=9^{2018}-1\)
\(S=\left(9^{2018}-1\right)\div8=\frac{9^{2018}-1}{8}\)
Vậy S = \(\frac{9^{2018}-1}{8}\)
S = 1 + 9 + 9\(^2\)+ . . . + 9\(^{2017}\)
9S = 9 + 9\(^2\)+ 9\(^3\)+ . . . + 9\(^{2018}\)
S = [ 9 + 9\(^2\)+ 9\(^3\)+ . . . + 9\(^{2018}\)] - [ 1 + 9 + 9\(^2\)+ . . . + 9\(^{2017}\)
S = [ 9 - 9 ] + [ 9\(^2\)- 9\(^2\) ] + [ 9\(^3\)- 9\(^3\)] + . . . + [ 9\(^{2017}\)- 9\(^{2017}\)] + [ 9\(^{2018}\)- 1 ]
S = 9\(^{2018}\)- 1
=> 9S=9+9^2+9^3+...+9^2018
=> 9S-S=8S=(9+9^2+9^3+...+9^2018)-(1+9+9^2+9^3+...+9^2017)
=> 8S=9+9^2+...+9^2018-1-9-9^2-...-9^2017
=> 8S=9^2018-1
=> S=(9^2018-1)/8
\(S=1+9+9^2+...+9^{2017}.\)
\(S=\left(1+9\right)+\left(9^2+9^3\right)+....+\left(9^{2016}+9^{2017}\right)\)
\(S=10+10.9^2+...+10.9^{2016}\)
\(S=1.\left(1+9^2+....+9^{2016}\right)⋮10\)
\(\Rightarrow S⋮10\)
5.2x-1 = 40
=>2x-1 = 8
=>2x-1 = 23
=>x - 1 = 3
=>x = 4
3x + 37 = 118
=>3x = 81
=>3x = 34
=>x = 4
5 . 2x-1 = 40
- > 2x-1 = 40 : 5 = 8
2x-1 = 23
- > x - 1 = 3 - > x = 4
3x + 37 = 118
3x = 118 - 37 = 81
3x = 34 - > x = 4
S = 1 + 9 + 92 + ... + 92017
9S = 9 + 92 + 93 + ... + 92018
- > 9S - S = 8S = ( 9 + 92 + ... + 92018 ) - ( 1 + 9 + ... + 92017 )
8S = 92018 - 1
= > S = ( 92018 - 1 ) : 8
a) Ta có:
S = 1 + 5 + 9 + 13 + ... + 2013 + 2017
S = (2017 + 1)[(2017 - 1) : 4 + 1] : 2
S = 2018.505 : 2
S = 1019090 ÷ 2
S = 509545
b) Ta có:
A = 1 + 3 + 32 + 33 + ... + 32016
3A = 3 + 32 + 33 + 34 + ... + 32017
3A - A = (3 + 32 + 33 + 34 + ... + 32017) - (1 + 3 + 32 + 33 + ... + 32016)
2A = 32017 - 1
A = \(\frac{3^{2017}-1}{2}\)
=> B - A = 32017 - \(\frac{3^{2017}-1}{2}\)
=> B - A = 32017 - \(\frac{3^{2017}}{2}-\frac{1}{2}\)
=> B - A = \(\frac{3^{2017}}{2}-0,5\)
t