cho điểm D nằm trong tam giác đều ABC. vẽ các tam giác đều BDE, CDE ( EFD cùng nằm trên một nửa mặt phẳng bờ BC ). chứng minh tứ giác AEDF là hình bình hành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình cau tu ve nha!
vì M và M' lần lượt là trung điểm của AC và A'C'
Mà AC=A'C'
=> AM=A'M'
xét tam giác ABM và A'B'C' có:
AB= A'B'(gt)
AM=A'M'(cmt)
BM=B'M'(gt )
=> tam giác ABM=A'B'M'(c.c.c)
=> góc A=góc A'
xét tam giác ABC và tam giác A'B'C' có:
AB=A'B'(gt)
góc A =góc A'(cmt)
AC= A'C'(gt)
=>tam giác ABC= tam giác A'B'C'(C.G.C)
nối BD và AC
trong tam giác ABC ta có: M và N lần luợt là trung đỉêm của AB và AC
=> MN là đuờng trung bình của tam giác ABC
=> MN//AC(
trong tam giác ADC ta có I và K lần luợt là trung điểm của DC và DA
=> KI là đuờng trung bình của tam giác ADC
=> KI//AC
ta có: KI//AC
MN//AC
=> KI//MN(1)
trong tam giác ABD có M và K lần luợt là trung điểm của AB và AD
=> MK là đuờng trung bình của tam giác ADB
=> MK//DB
trong tam giác CDB có I và N lần luợt là trung điểm của DC và CB
=> IN là đuờng trung bình của tam, giác CDB
=>IN//BD
ta có: MK//DB
IN//DB
=> MK//IN(2)
từ (1)(2)=> MK//IN
MN//KI
=> MNIK là hình bình hành
Bài 1:Vẽ đường chéo BD
Xét tam giác ADB có:
M là trung điểm của AB
K là trung điểm của AD
=>KM là đường trung bình của tam giác ADB
=>KM//DB(1) và KM=1/2 DB(3)
Xét tam giác BCD có:
N là trung điểm của BC
I là trung điểm của DC
=>NI là đường trung bình của tam giác BCD
=>NI//DB(2) và NI=1/2DB(4)
Từ (1) và (2)=>KM//NI( //DB)(5)
Từ (3) và (4)=>KM=NI(=1/2 DB)(6)
Từ (5) và (6)=>KMNI là hình bình hành (dhnb3)
Ta có: ^BCD+^ACD=^ACB=600
^ACF+^ACD=^FCD=600
=> ^BCD=^ACF => Tam giác BDC=Tam giác AFC (c.g.c)
=> BD=AF (2 cạnh tương ứng) . Mà BD=DE => AF=DE
Tương tự: ^CBD=^ABE => Tam giác BDC=Tam giác BEA
=> DC=EA (2 cạnh ương ứng) . mà DC=DF => EA=DF
Xét tứ giác AEDF: AF=DE; AE=DF => Tứ giác AEDF là hình bình hành (đpcm).