tính tổng :
S= 2^3 + 2^5 + 2^7 +.....+ 2^25
S= 3 + 3^2 + 3^3 + ..... + 3^100
GIÚP MK NHA AI NHANH MK K CHO !!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)S=1-2+3-4+...+2005-2006
S=(1-2)+(3-4)+...+(2005-2006)
S=(-1)+(-1)+...+(-1) Dãy S có 2016 thì có 1008 cặp
S=(-1)x1008
S=-1008
b)Tương tự
c)S=1+2-3-4+5+6-7-8+...+2001+2002-2003-2004
S=(1+2-3-4)+(5+6-7-8)+...+(2001+2002-2003-2004)
S=(-4)+(-4)+...+(-4) Dãy S có 2004 số => có 1002
S=(-4)x1002
S=-4008
S=3/2^0+3/2^1+....+3/2^2018
S=3/2.(2/2^0+2/2^1+....+2^2018)
đặt B=2/2^0+2/2^1+....+2^2018
2B=2.(2/2^0+2/2^1+....+2^2018)
2B=1+2/2^0+...+2/2^2017
2B-B=(1+2/2^0+...+2/2^2017)-(2/2^0+2/2^1+....+2^2018)
B=1-2^2018
S=3/2.1-2^2018=3/2^2018
\(a,\left|x+2\right|=0\)
\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
\(b,\left|x-5\right|=\left|-7\right|\)
\(\Leftrightarrow\left|x-5\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=7\\x-5=-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-2\end{matrix}\right.\)
\(c,\left(7-x\right)-\left(25+7\right)=-25\)
\(\Leftrightarrow7-x-32=-25\)
\(\Leftrightarrow x=0\)
\(d,\left|x-3\right|=\left|5\right|+\left|-7\right|\)
\(\Leftrightarrow\left|x-3\right|=12\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=12\\x-3=-12\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=15\\x=-9\end{matrix}\right.\)
A=3.(1/1.2+1/2.3+1/3.4+.....+1/399.400)
A=3.(1/1-1/2+1/2-1/3+......+1/399-1/400)
A=3.(1-1/400)
A=3.399/400
A=1197/400
A=3.(1/1.2+1/2.3+1/3.4+.....+1/399.400)
A=3.(1/1-1/2+1/2-1/3+......+1/399-1/400)
A=3.(1-1/400)
A=3.399/400
A=1197/400
2 . \(\frac{3}{7}\) + (\(\frac{2}{9}\) . 1\(\frac{3}{7}\) ) - \(\frac{5}{3}\) : \(\frac{1}{9}\)
= \(\frac{6}{7}\) + (\(\frac{2}{9}\) . \(\frac{10}{7}\) ) -\(\frac{5}{3}\) . 9
=\(\frac{6}{7}\) +\(\frac{20}{63}\) - 15 = \(\frac{74}{63}\) -15 = \(\frac{-871}{63}\)
nó có đẹp ko
S=(1-2)+(3-4)+(5-6)+...+(199-200)
S=(-1)+(-1)+...+(-1)
S=(-1).100=-100
S=1+(2-3)+(-4+5)+...+(98-99)+(-100+101)
S=1+(-1)+1+..+(-1)+1
S=1+25.(-1)+25.1
S=1+(-25)+25
S=1+0
=1
Ta có:
a) \(S=2^3+2^5+2^7+...+2^{25}\)
\(\Rightarrow2^2\cdot S=2^2\cdot\left(2^3+2^5+2^7+...+2^{25}\right)\)
\(\Rightarrow4\cdot S=2^5+2^7+2^9+...+2^{27}\)
\(\Rightarrow4\cdot S-S=\left(2^5+2^7+2^9+...+2^{27}\right)-\left(2^3+2^5+2^7+...+2^{25}\right)\)
\(\Rightarrow3\cdot S=2^{27}-2^3\)
\(\Rightarrow S=\frac{2^{27}-2^3}{3}\)
b) \(S=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3\cdot S=3\cdot\left(3+3^2+3^3+...+3^{100}\right)\)
\(\Rightarrow3\cdot S=3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow3\cdot S-S=\left(3^2+3^3+3^4+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)
\(\Rightarrow2\cdot S=3^{101}-3\)
\(\Rightarrow S=\frac{3^{101}-3}{2}\)