Tìm tất cả các số nguyên dương n sao cho \(\left(n-2\right)!\)không chia hết cho \(n^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) Vì 2013 là số lẻ nên (\(1^{2013}+2^{2013}\)+....\(n^{2013}\)): (1+2+...+n)
Hay( \(1^{2013}+2^{2013}\)+\(3^{2013}\)+......\(n^{2013}\)) :\(\dfrac{n\left(n+1\right)}{2}\)
=>2(\(1^{2013}+2^{2013}\)+\(3^{2013}\)+......\(n^{2013}\)):n(n+1)(đpcm)
B)
Do 1 lẻ , \(2q^2\) chẵn nên p lẻ
p2−1⇔\(2q^2\)(p−1)(p+1)=\(2q^2\)
p lẻ nên p−1 và p+1đều chẵn ⇒(p−1)(p+1)⋮4
⇒\(q^2\):2 =>q:2 =>q=2
⇒\(q^2\)=2.2\(^2\)+1=9=>q=3
Chắc đúng vì hôm trước cô mik giải thik vTrước hết ta dùng quy tắc tổ hợp chứng minh điều này: \(\dfrac{\left(n^2\right)!}{\left(n!\right)^{n+1}}\) luôn luôn là 1 số nguyên dương
Giả sử có \(n^2\) người, ta muốn chia họ vào n nhóm khác nhau, mỗi nhóm có đúng n người. Thứ tự của các nhóm và thứ tự mỗi người trong nhóm không quan trọng.
Xếp vị trí \(n^2\) người, có \(\left(n^2\right)!\) cách
Do trong các nhóm, vị trí mỗi người là không quan trọng nên mỗi nhóm bị lặp lại \(n!\) lần cách xếp (là hoán vị của n người trong nhóm). Như vậy, với n nhóm ta đã bị lặp lại: \(n!.n!...n!=\left(n!\right)^n\) lần xếp
Do vị trí của mỗi nhóm là không quan trọng, do đó khi xếp ta đã lặp lại thêm \(n!\) lần (là hoán vị của các nhóm với nhau)
Tổng cộng, ta đã lặp: \(\left(n!\right)^n.n!=\left(n!\right)^{n+1}\) lần xếp
Do đó, số cách xếp thực sự là: \(\dfrac{\left(n^2\right)!}{\left(n!\right)^{n+1}}\)
Số cách xếp vị trí hiển nhiên phải là 1 số nguyên dương, do đó, \(\dfrac{\left(n^2\right)!}{\left(n!\right)^{n+1}}\) cũng phải là 1 số nguyên dương
\(\Rightarrow\left(n^2\right)!=k.\left(n!\right)^{n+1}\) với k là số nguyên dương
Để \(\left(n!\right)^n⋮\left(n^2-1\right)!\Rightarrow\left(n!\right)^n=m.\left(n^2-1\right)!\) với m nguyên dương
\(\Rightarrow\left(n!\right)^n=m.\dfrac{\left(n^2\right)!}{n^2}=m.\dfrac{k.\left(n!\right)^{n+1}}{n^2}\)
\(\Rightarrow n!.k.m=n^2\)
\(\Rightarrow n=\left(n-1\right)!.k.m\ge\left(n-2\right)\left(n-1\right).k.m\ge\left(n-2\right)\left(n-1\right)\)
\(\Rightarrow n^2-4n+2\le0\)
\(\Rightarrow n\le2+\sqrt{2}\Rightarrow n=\left\{1;2;3\right\}\)
Thử lại chỉ có \(n=1\) thỏa mãn
Vậy \(n=1\) là số nguyên dương duy nhất thỏa mãn yêu cầu
Em cx ms nghĩ được 1 phần thôi ạ ; em dùng LTE ạ k biết có đúng k ?
Với mỗi số nguyên tố p và số nguyên dương q kí hiệu \(v_p\left(q\right)\) là số mũ đúng của p trong phân tích tiêu chuẩn ra thừa số nguyên tố của \(q!\)
C/m : n = 4 và n = p là số nguyên tố thì (n!)^n \(⋮̸\) \(\left(n^2-1\right)!\)
Thật vậy ; n = 4 thì \(v_2\left(4!\right)^4=4v_2\left(24\right)=12>11=v_2\left(4^2-1\right)!\)
=> (n!)^n \(⋮̸\) \(\left(n^2-1\right)!\)
CMTT với n = p
Tiếp theo ; ta c/m : n \(\ne4\) và \(n\ne p\) thì \(\left(n!\right)^n⋮\left(n^2-1\right)!\)
(Đoạn này e chưa ra)
tìm tất cả các số nguyên dương n sao cho? | Yahoo Hỏi & Đáp
ko phải là chia heetscho n+11 mà chia hết cho 11
yahoo ko đúng đề bài
ta có: xy+3y-y=6
=> xy+2y=6
=> y(x+2)=6
vì x,y nguyên nên y,(x+2) là các ước của 6
ta có bảng sau
x+2 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
y | 6 | -6 | 3 | -3 | 2 | -2 | 1 | -1 |
x | -1 | -3 | 0 | -4 | 1 | -5 | 4 | -8 |
xy+3y-y=6
xy+y(3-1)=6
xy+y2=6
y(x+2)=6
lập bảng
x+2 | 2 | 3 | -2 | -3 |
y | 3 | 2 | -3 | -2 |
x | 0 | 1 | -4 | -5 |
vậy với các cặp x,y thỏa mãn là:
nếu y=3 thì x=0;nếu y=2 thì x=1;nếu y=-2 thì x=-4;nếu y=-3 thì x=-5
Lời giải:
Nếu $n\vdots 3$. Đặt $n=3k$ với $k$ tự nhiên.
Khi đó: $2^n-1=2^{3k}-1=8^k-1\equiv 1^k-1\equiv 0\pmod 7$ (tm)
Nếu $n$ chia 3 dư 1. Đặt $n=3k+1$ với $k$ tự nhiên.
Khi đó: $2^n-1=2^{3k+1}-1=8^k.2-1\equiv 1^k.2-1\equiv 1\pmod 7$ (không tm)
Nếu $n$ chia 3 dư 2. Đặt $n=3k+2$ với $k$ tự nhiên.
Khi đó: $2^n-1=2^{3k+2}-1=8^k.4-1\equiv 1^k.4-1\equiv 3\pmod 7$ (không tm)
Vậy số tự nhiên $n$ thỏa mãn $2^n-1\vdots 7$ là những số chia hết cho 3.
Lời giải:
Nếu $n\vdots 3$. Đặt $n=3k$ với $k$ tự nhiên.
Khi đó: $2^n-1=2^{3k}-1=8^k-1\equiv 1^k-1\equiv 0\pmod 7$ (tm)
Nếu $n$ chia 3 dư 1. Đặt $n=3k+1$ với $k$ tự nhiên.
Khi đó: $2^n-1=2^{3k+1}-1=8^k.2-1\equiv 1^k.2-1\equiv 1\pmod 7$ (không tm)
Nếu $n$ chia 3 dư 2. Đặt $n=3k+2$ với $k$ tự nhiên.
Khi đó: $2^n-1=2^{3k+2}-1=8^k.4-1\equiv 1^k.4-1\equiv 3\pmod 7$ (không tm)
Vậy số tự nhiên $n$ thỏa mãn $2^n-1\vdots 7$ là những số chia hết cho 3.
Tìm tất cả các số nguyên dương m,n sao cho p = m^2+n^2 là số nguyên tố và m^3+n^3 - 4 chia hết cho p
để n^2 +2002 là số chính phương
=> n^2 +2002 =a^2 ( với a là số tự nhiên #0)
=> a^2 -n^2 =2002
=> (a-n)(a+n) =2002
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2
mà a-n -(a+n) =-2n chia hết cho 2
=> a-n và a+n cung tính chẵn lẻ => a-n ,a+n đều chia hết cho 2
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4
=> vô lý
Ai giải được thì nhớ giải rõ ràng nhé! Xin cam ơn người giải được.