giải phương trình nghiệm nguyên: \(x\left(x^2+x+1\right)=4y\left(y+1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu x=0, y =1, -1
-Nếu x khác 0,
- Nếu x lẻ, cộng 2 vế với 1
x^3 + x^2 + x + 1 = 4y^2 + 4y + 1
<=> (x^2 + 1)(x + 1) = (2y + 1)^2
x lẻ
x^2 + 1 chẵn
x + 1 chẵn
=> VT chẵn mà VP luôn lẻ => loại TH x lẻ
Xét x chẵn =>....tui thấy trên mạng nó lm tek này,,nhưng mà TH chẵn nó lm sai,,,
Vậy pt có 2 cặp nghiệm nguyên (0,1) và (0,-1)
a. \(x\left(x^2+x+1\right)=4y\left(y+1\right)\)
<=> \(x^3+x^2+x+1=4y^2+4y+1\)
<=> \(\left(x+1\right)\left(x^2+1\right)=\left(2y+1\right)^2\)là một số chính phương lẻ
=> \(x+1;x^2+1\) là 2 số lẻ (1)
Chứng minh: \(\left(x+1;x^2+1\right)=1\)
Đặt: \(\left(x+1;x^2+1\right)=d\)
=> \(\hept{\begin{cases}x-1⋮d\\x^2+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}x^2-1⋮d\\x^2+1⋮d\end{cases}}}\)
=> \(\left(x^2+1\right)-\left(x^2-1\right)⋮d\)
=> \(2⋮d\)(2)
Từ (1) => d lẻ ( 3)
(2); (3) => d =1
Vậy \(\left(x+1;x^2+1\right)=1\)
Có \(\left(x+1\right)\left(x^2+1\right)\) là số chính phương
Từ 2 điều trên => \(\left(x+1\right),\left(x^2+1\right)\) là 2 số chính phương
Mặt khác \(x^2\) là số chính phương
Do đó: x = 0
Khi đó: \(4y\left(y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=0\\y=-1\end{cases}}\)
Vậy phương trình có nghiệm ( x; y) là ( 0; 0) hoặc (0; -1)
(1+x2)(1+y2)+4xy+2(x+y)(1+xy)=25(1+x2)(1+y2)+4xy+2(x+y)(1+xy)=25
↔x2+2xy+y2+x2y2+2xy.1+1+2(x+y)(1+xy)−25=0x2+2xy+y2+x2y2+2xy.1+1+2(x+y)(1+xy)−25=0
↔(x+y)2+2(x+y)(1+xy)+(1+xy)2−25=0(x+y)2+2(x+y)(1+xy)+(1+xy)2−25=0
↔(x+y+1+xy+5)(x+y+1+xy−5)=0(x+y+1+xy+5)(x+y+1+xy−5)=0→[x+y+xy=−6x+y+xy=4[x+y+xy=−6x+y+xy=4
Nếu x+y+xy=-6→(x+1)(y+1)=-5(vì x,yϵ z nên x+1,y+1ϵ z)
ta có bảng:
x+1 1 5 -1 -5
y+1 -5 -1 5 1
x 0 4 -2 -6
y -6 -2 4 0
→(x,y)ϵ{(0;−6),(4;−2)...}
\(\left(1+x^2\right)\left(1+y^2+4xy\right)+2\left(x+y\right)\left(1+xy\right)=25\)
\(\Leftrightarrow\) \(x^2+2xy+y^2+x^2y^2+2xy.1+1+2\left(x+y\right)\left(1+xy\right)-25=0\)
\(\Leftrightarrow\) \(\left(x+y\right)^2+2\left(x+y\right)\left(1+xy\right)+\left(1+xy\right)^2-25=0\)
\(\Leftrightarrow\) \(\left(x+y+1+xy+5\right)\left(x+y+1+xy-5\right)=0\) \(\Rightarrow\) \(\left\{{}\begin{matrix}x+y+xy=-6\\x+y+xy=4\end{matrix}\right.\)
nếu \(x+y+xy=-6\Rightarrow\left(x+1\right)\left(y+1\right)=-5\)
( vì \(x,y\in Z\) nên \(x+1;y+1\in Z\) )
ta lập bảng :
\(x+1\) | \(1\) | \(5\) | \(-1\) | \(-5\) |
\(y+1\) | \(-5\) | \(-1\) | \(5\) | \(1\) |
\(x\) | \(0\) | \(4\) | \(-2\) | \(-6\) |
\(y\) | \(-6\) | \(-2\) | \(4\) | \(0\) |
\(\Rightarrow\) \(x;y\in\left\{\left(0,6\right);\left(4,-2\right);\left(-2,4\right);\left(-6,0\right)\right\}\)
chuyển vế ta có:
\(x^2-2xy+2y^2-2x-1=x^2-2x\left(y+1\right)+2y^2-1\)
tinh penta ta có:
\(penta'=\left(y+1\right)^2-\left(2y^2-1\right)=-y^2+2y+2=-\left(y+1\right)^2+3\)
để pt có nghiệm nguyên thi penta' phai lon hon hoac bang 0
co penta' nho hon hoac bang 3
từ 2 điều trên ta có: 0 nho hon hoac bang penta' <3
theo penta' ta có \(x_1=y+1-\sqrt{-\left(y+1\right)^2+3}\)
\(x_2=y+1+\sqrt{-\left(y+1\right)^2+3}\)\
mà x nguyên, y nguyên nên ta có:
\(\sqrt{-\left(y+1\right)^2+3}thuocZ\) =>\(-\left(y+1\right)^2+3\) la SCP
ma 0 nho hon hoac bang \(-\left(y+1\right)^2+3\) <3
=>\(-\left(y+1\right)^2+3\) =0 hoặc =1
, nếu trường hợp nào cho cả 2 nghiệm x,y nguyên thì chọn
PT\(\Leftrightarrow x^2-2xy+2y^2=2x+2\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+y^2-2x=2\)
\(\Leftrightarrow\left(x-y\right)^2-2\left(y-x\right)+1+y^2-2y+1=4\)
\(\Leftrightarrow\left(x-y-1\right)^2+\left(y-1\right)^2=4\)
Do x,y nguyên => Các hạng tử là số CP
Ta có các trường hợp
(y-1)2 | 0 | 4 |
(x-y-1)2 | 4 | 0 |
+) (y-1)2=0
=> y= 1
=> x= 0 hoặc 4
+) (y-1)2=4
=> y= -1 hoặc 3
=> (x;y)= (2;-1);(4;3)
ĐKXĐ: ...
\(y\left(y^2-5y+4\right)+y^2=\left(y^2-5y+4\right)\sqrt{x+1}+x+1\)
\(\Leftrightarrow\left(y^2-5y+4\right)\left(y-\sqrt{x+1}\right)+\left(y+\sqrt{x+1}\right)\left(y-\sqrt{x+1}\right)=0\)
\(\Leftrightarrow\left(y-\sqrt{x+1}\right)\left[\left(y-2\right)^2+\sqrt{x+1}\right]=0\)
\(\Leftrightarrow y=\sqrt{x+1}\Rightarrow y^2=x+1\)
Thế xuống pt dưới:
\(2\sqrt{x^2-3x+3}+6x-7=\left(x+1\right)\left(x-1\right)^2+x\sqrt{3x-2}\)
\(\Leftrightarrow2\left(\sqrt{x^2-3x+3}-1\right)+x\left(x-\sqrt{3x-2}\right)=x^3-7x+6\)
\(\Leftrightarrow\dfrac{2\left(x^2-3x+2\right)}{\sqrt{x^2-3x+3}+1}+\dfrac{x\left(x^2-3x+2\right)}{x+\sqrt{3x-2}}=\left(x+3\right)\left(x^2-3x+2\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+2=0\\\dfrac{2}{\sqrt{x^2-3x+3}+1}+\dfrac{x}{x+\sqrt{3x-2}}=x+3\left(1\right)\end{matrix}\right.\)
Xét (1) với \(x\ge\dfrac{3}{2}\):
\(\dfrac{2}{\sqrt{x^2-3x+3}+1}\le8-4\sqrt{3}< 1\)
\(\sqrt{3x-2}\ge0\Rightarrow\dfrac{x}{x+\sqrt{3x-2}}\le1\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2}{\sqrt{x^2-3x+3}+1}+\dfrac{x}{x+\sqrt{3x-2}}< 2\\x+3>2\end{matrix}\right.\)
\(\Rightarrow\left(1\right)\) vô nghiệm
ta có : \(x\left(x^2+x+1\right)=4y\left(y+1\right)\)
<=>\(x^3+x^2+x+1=4y^2+4y+1\)
<=>\(\left(x^2+1\right)\left(x+1\right)=\left(2y+1\right)^2\)
ta thấy : \(x^2+1\) và \(x+1\) cùng tính chẵn lẻ.Mà \(\left(2y+1\right)^2\) là bình phương của 1 số lẻ nên \(x^2+1\) và \(x+1\) cùng lẻ => x chẵn
mặt khác: tích \(\left(x^2+1\right)\left(x+1\right)\) là 1 số chính phương lẻ =>\(x^2+1=x+1\)
<=>\(x^2=x\) <=> x(x-1)=0 \(\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
mà x là số chẵn nên x=0 => 4y(y+1)=0 \(\Rightarrow\orbr{\begin{cases}y=0\\y+1=0\end{cases}\Rightarrow\orbr{\begin{cases}y=0\\y=-1\end{cases}}}\)
vậy nghiệm của phương trình là : (x;y)={ (0;0) ; (0;-1)}
Tại sao lại suy ra x2+1=x+1. Mình không hiểu chỗ đó giải thích cho mình với