K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐKXĐ: \(x\notin\left\{-1;-2;...;-13\right\}\)

\(\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+...+\dfrac{1}{x^2+25x+156}=\dfrac{3}{91}\)

=>\(\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+...+\dfrac{1}{\left(x+12\right)\left(x+13\right)}=\dfrac{3}{91}\)

=>\(\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+...+\dfrac{1}{x+12}-\dfrac{1}{x+13}=\dfrac{3}{91}\)

=>\(\dfrac{1}{x+1}-\dfrac{1}{x+13}=\dfrac{3}{91}\)

=>\(\dfrac{12}{\left(x+1\right)\left(x+13\right)}=\dfrac{3}{91}\)

=>\(\dfrac{4}{\left(x+1\right)\left(x+13\right)}=\dfrac{1}{91}\)

=>(x+1)(x+13)=364

=>\(x^2+14x+13-364=0\)

=>\(x^2+14x-351=0\)

=>(x+27)(x-13)=0

=>\(\left[{}\begin{matrix}x=13\left(nhận\right)\\x=-27\left(nhận\right)\end{matrix}\right.\)

2 tháng 12 2018

a/ \(\dfrac{1}{x^2+x}+\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}\)

\(=\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}\)

\(=\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}\)

\(=\dfrac{1}{x}-\dfrac{1}{x+4}\)

Vậy..

b/ \(\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}\)

\(=\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}\)

\(=\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}\)

\(=\dfrac{1}{x+1}-\dfrac{1}{x+5}\)

Vậy..

4 tháng 7 2021

1) x2 -7x + 10 = x2 - 2x - 5x + 10 = x(x - 2) - 5(x - 2) = (x - 5)(x - 2)

2) x2 + 3x + 2 = x2 + 2x + x  + 2 = x(x + 2) + (x + 2) = (x + 1)(x + 2)

3) x2 - 7x + 12 = x2 - 3x - 4x + 12 = x(x - 3) - 4(x - 3) = (x - 3)(x - 4)

4) x2 + 7x + 12 = x2 + 3x + 4x + 12 = x(x + 3) + 4(x + 3) = (x + 3)(x + 4)

5) 16x - 5x2 - 3 = 15x - 5x2 + x - 3 = -5x(x - 3) + (x - 3) = (x - 3)(1 - 5x) 

6) 6x2 + 7x - 3 = 6x2 - 2x + 9x - 3 = 2x(3x - 1) + 3(3x - 1) = (2x + 3)(3x - 1)  

7) 3x2 - 3x - 6 = 3x2 - 6x + 3x - 6 = 3x(x - 2) + 3(x - 2) = (x - 2)(3x + 3) = 3(x - 2)(x + 1)

8) 3x2 + 3x - 6 = 3x2 - 3x + 6x - 6 = 3x(x - 1) + 6(x - 1) = (x - 1)(3x + 6) = 3(x - 1)(x + 2)

9) 6x2 - 13x + 6 = 6x2 - 9x -  4x + 6 = 3x(2x - 3) - 2(2x - 3) = (3x - 2)(2x - 3) 

10) 6x2 + 15x  + 6 = 6x2 + 12x + 3x + 6 = 6x(x + 2) + 3(x + 2) = (x + 2)(6x + 3) = 3(x + 2)(3x + 1)

11) 6x2 - 20x + 6 = 6x2 - 18x - 2x + 6 = 6x(x -3) - 2(x - 3) = (6x - 2)(x - 3) = 2(3x - 1)(x - 3)

12) 8x2 + 5x - 3 = 8x2 + 8x - 3x - 3 = 8x(x + 1) - 3(x + 1) = (x + 1)(8x - 3)

18 tháng 3 2021

x2-4x+7 = 0 ⇔ x2 -4x + 4 + 3 = 0 

⇔ (x-2)2+3=0 ⇔ (x-2)2=-3 (vô lí)

Vậy pt vô nghiệm

*Chứng minh phương trình \(x^2-4x+7=0\) vô nghiệm

Ta có: \(x^2-4x+7=0\)

\(\Leftrightarrow x^2-4x+4+3=0\)

\(\Leftrightarrow\left(x-2\right)^2+3=0\)

mà \(\left(x-2\right)^2+3\ge3>0\forall x\)

nên \(x\in\varnothing\)(đpcm)

15 tháng 8 2020

a) \(5x\left(\frac{1}{5}x-2\right)+3\left(6-\frac{1}{3}x^2\right)=12\)

=> \(x^2-10x+18-x^2=12\)

=> -10x + 18 = 12

=> -10x = -6

=> -5x = -3

=> x = 3/5

b) 7x(x - 2) - 5(x - 1) = 7x2 + 3

=> 7x2 - 14x - 5x + 5 = 7x2 + 3

=> 7x2 - 14x - 5x + 5 - 7x2 - 3 = 0

=> -19x + 2 = 0

=> -19x = -2

=> x = \(\frac{2}{19}\)

c) 2(5x - 8) - 3(4x - 5) = 4(3x - 4) + 11

=> 10x - 16 - 12x + 15 = 12x - 16 + 11

=> 10x - 16 - 12x + 15 - 12x + 16 - 11 = 0

=> (10x - 12x - 12x) + (-16 + 15 + 16 - 11) = 0

=> -14x + 4 = 0

=> -14x = -4

=> -7x = -2

=> x = 2/7

13 tháng 12 2021

Bài 2: 

a: \(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}=\dfrac{3}{10}\)

\(\Leftrightarrow\dfrac{x+4-x-1}{\left(x+4\right)\left(x+1\right)}=\dfrac{3}{10}\)

\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=10\)

\(\Leftrightarrow x^2+5x-6=0\)

=>(x+6)(x-1)=0

=>x=-6 hoặc x=1

=>\(\dfrac{-1}{x-1}+\dfrac{1}{x-2}-\dfrac{1}{x-2}+\dfrac{1}{x-3}-\dfrac{1}{x-3}+\dfrac{1}{x-4}=2\)

=>\(\dfrac{1}{x-4}-\dfrac{1}{x-1}=2\)

=>\(\dfrac{x-1-x+4}{x^2-5x+4}=2\)

=>2x^2-10x+8=3

=>2x^2-10x+5=0

=>\(x=\dfrac{5\pm\sqrt{15}}{2}\)

13 tháng 6 2020

Cảm ơn diễn quỳnh

13 tháng 6 2020

Mình là diễm quỳnh chứ không phải diễn quỳnh nha bạnkhocroi