K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2023

loading...  loading...  loading...  loading...  

27 tháng 6 2023

\(n_{Fe}=a;n_{Cu}=b\\ 56a+64b=9,2\left(I\right)\\ BTe^{^{ }-}:3a+2b=2n_{SO_2}\left(II\right)\\ n_{H_2SO_4pư}=n_{SO_2}+1,5a+b\\ n_{H_2SO_4sau}=\dfrac{50.0,98}{98}-n_{SO_2}-1,5a-b=0,5-n_{SO_2}-1,5a-b\\ m_{ddsau}=9,2+50-64n_{SO_2}=59,2-64n_{SO_2}\\ \Rightarrow:\dfrac{98\left(0,5-n_{SO_2}-1,5a-b\right)}{59,2-64n_{SO_2}}=\dfrac{30,625}{100}\left(III\right)\\ \Rightarrow a=0,05;b=0,1;n_{SO_2}=0,175mol\\ V=0,175.22,4=3,92L\\ \%m_{Fe}=\dfrac{0,05.56}{9,2}.100\%=30,43\%\\ \%m_{Cu}=69,57\%\)

AH
Akai Haruma
Giáo viên
17 tháng 9 2023

Lời giải:
a.  ĐKXĐ: $x>0; x\neq 1$

\(P=\left[\frac{\sqrt{x}(\sqrt{x}+1)}{(\sqrt{x}-1)(\sqrt{x}+1)}+\frac{\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+1)}\right].\frac{x+\sqrt{x}}{\sqrt{x}+2}\)

\(=\frac{x+\sqrt{x}+\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+1)}.\frac{\sqrt{x}(\sqrt{x}+1)}{\sqrt{x}+2}=\frac{\sqrt{x}(\sqrt{x}+2)}{(\sqrt{x}-1)(\sqrt{x}+1)}.\frac{\sqrt{x}(\sqrt{x}+1)}{\sqrt{x}+2}=\frac{x}{\sqrt{x}-1}\)

b.

$P>2 \Leftrightarrow \frac{x}{\sqrt{x}-1}-2>0$

$\Leftrightarrow \frac{x-2\sqrt{x}+2}{\sqrt{x}-1}>0$

$\Leftrightarrow \frac{(\sqrt{x}-1)^2+1}{\sqrt{x}-1}>0$

$\Leftrightarrow \sqrt{x}-1>0$ (do $(\sqrt{x}-1)^2+1>0$)

$\Leftrightarrow x>1$

Kết hợp đkxđ suy ra $x>1$
c. 

$\frac{1}{P}=\frac{\sqrt{x}-1}{x}$

Áp dụng BĐT Cô-si:

$x+4\geq 4\sqrt{x}\Rightarrow x\geq 4(\sqrt{x}-1)$
$\Rightarrow \frac{\sqrt{x}-1}{x}\leq \frac{\sqrt{x}-1}{4(\sqrt{x}-1)}=\frac{1}{4}$

Vậy $\frac{1}{P}$ max $=\frac{1}{4}$ khi $x=4$

18 tháng 9 2023

em cảm ơn ạ.

15 tháng 8 2023

loading...  

14 tháng 10 2023

loading...  loading...  loading...  loading...  

14 tháng 10 2023

a: ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ACB}=30^0\)

Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}\)

=>\(\dfrac{4}{BC}=sin30=\dfrac{1}{2}\)

=>BC=8(cm)

\(AC=\sqrt{BC^2-AB^2}=4\sqrt{3}\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên AH*BC=AB*AC

=>\(AH\cdot8=4\cdot4\sqrt{3}=16\sqrt{3}\)

=>\(AH=2\sqrt{3}\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{4^2}{8}=2\left(cm\right)\\CH=\dfrac{48}{8}=6\left(cm\right)\end{matrix}\right.\)

b: \(BC\cdot sinB\cdot sinC\)

\(=BC\cdot\dfrac{AC}{BC}\cdot\dfrac{AB}{BC}=\dfrac{AB\cdot AC}{BC}=AH\)

\(BC\cdot cos^2B\)

\(=BC\cdot\left(\dfrac{AB}{BC}\right)^2=\dfrac{AB^2}{BC}=BH\)

\(BC\cdot sin^2B=BC\cdot\left(\dfrac{AC}{BC}\right)^2=\dfrac{AC^2}{BC}=CH\)

c:

\(\dfrac{AH^2}{AC^2}=\dfrac{HB\cdot HC}{BC\cdot HC}=\dfrac{HB}{BC}\)

ΔHAB vuông tại H có HD là đường cao

nên \(\left\{{}\begin{matrix}BD\cdot BA=BH^2\\AD\cdot AB=AH^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=\dfrac{BH^2}{AB}\\AD=\dfrac{AH^2}{AB}\end{matrix}\right.\)

ΔHAC vuông tại H có HE là đường cao

nên \(\left\{{}\begin{matrix}CE\cdot CA=CH^2\\AE\cdot AC=AH^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}CE=\dfrac{CH^2}{AC}\\AE=\dfrac{AH^2}{AC}\end{matrix}\right.\)

\(\dfrac{DB}{EC}=\dfrac{HB^2}{AB}:\dfrac{HC^2}{AC}\)

\(=\dfrac{HB^2}{AB}\cdot\dfrac{AC}{HC^2}\)

\(=\left(\dfrac{HB}{HC}\right)^2\cdot\dfrac{AC}{AB}=\dfrac{AC}{AB}\cdot\left(\dfrac{AB}{AC}\right)^4=\left(\dfrac{AB}{AC}\right)^3\)

\(BD\cdot CE\cdot BC\)

\(=\dfrac{BH^2}{AB}\cdot\dfrac{CH^2}{AC}\cdot BC\)

\(=\dfrac{AH^4}{AH}=AH^3\)

=DE3

\(BC\cdot HD\cdot HE\)

\(=BC\cdot\dfrac{HA\cdot HB}{AB}\cdot\dfrac{HA\cdot HC}{AC}\)

\(=\dfrac{1}{AH}\cdot\dfrac{HA^2\cdot HB\cdot HC}{1}=\dfrac{HA\cdot HB\cdot HC}{1}=HA^3\)

\(=DE^3\)

=>ĐPCM

 

15 tháng 10 2023

C2 cug cơ bản tự làm nhee

loading...  

15 tháng 10 2023

Câu 1:

\(n_{Ca\left(OH\right)_2}=1,8.0,05=0,09\left(mol\right)\)

BTNT Ca, có: \(n_{CaCO_3}=n_{Ca\left(OH\right)_2}=0,09\left(mol\right)\)

Mà: mCaCO3 + mBaCO3 = 18,85 (g)

\(\Rightarrow n_{BaCO_3}=\dfrac{18,85-0,09.100}{197}=0,05\left(mol\right)\)

BTNT C, có: nCO2 = nCaCO3 + nBaCO3 = 0,14 (mol) = nC

Sau pư với Ca(OH)2 có: \(\left\{{}\begin{matrix}n_{CaCO_3}+2n_{Ca\left(HCO_3\right)_2}=0,14\\n_{CaCO_3}+n_{Ca\left(HCO_3\right)_2}=0,09\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}n_{CaCO_3}=0,04\left(mol\right)\\n_{Ca\left(HCO_3\right)_2}=0,05\left(mol\right)\end{matrix}\right.\)

Có: m dd tăng = mCO2 + mH2O - m kết tủa

⇒ 3,78 = 0,14.44 + 18nH2O - 0,04.100 ⇒ nH2O = 0,09 (mol)

⇒ nH = 0,09.2 = 0,18 (mol)

\(\Rightarrow n_N=\dfrac{2,14-0,14.12-0,18.1}{14}=0,02\left(mol\right)\)

Gọi: CTPT của A là CxHyNt

⇒ x:y:t = 0,14:0,18:0,02 = 7:9:1

Vậy: CTĐGN của A là C7H9N.

 

 

22 tháng 11 2023

Bài 2:

a: (d)//y=-2x+3 nên \(\left\{{}\begin{matrix}a=-2\\b\ne3\end{matrix}\right.\)

vậy: (d): y=-2x+b

Thay x=-1 và y=1 vào (d), ta được:

\(b+\left(-2\right)\cdot\left(-1\right)=1\)

=>b+2=1

=>b=-1

Vậy: (d): y=-2x-1

b: Thay x=0 và y=1 vào (d), ta được:

\(0\cdot a+b=1\)

=>b+0=1

=>b=1

Vậy: (d): y=ax+1

Thay x=-3 và y=0 vào (d), ta được:

\(-3\cdot a+1=0\)

=>-3a=-1

=>\(a=\dfrac{1}{3}\)

Vậy: (d): \(y=\dfrac{1}{3}x+1\)

Bài 1:

a: Vì (d)//y=-3x+1 nên a=-3 và b<>1

vậy: (d): y=-3x+b

Thay x=1/3 và y=-1 vào (d), ta được:

\(b-3\cdot\dfrac{1}{3}=-1\)

=>b-1=-1

=>b=0

vậy: (d): y=-3x

b: Thay x=2 và y=0 vào (d), ta được:

\(a\cdot2+b=0\)

=>2a+b=0(1)

Thay x=-1 và y=4 vào (d), ta được:

\(a\cdot\left(-1\right)+b=4\)

=>-a+b=4(2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}2a+b=0\\-a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a=-4\\2a+b=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a=-\dfrac{4}{3}\\b=-2a=-2\cdot\dfrac{-4}{3}=\dfrac{8}{3}\end{matrix}\right.\)

Vậy: (d): \(y=-\dfrac{4}{3}x+\dfrac{8}{3}\)

Bài 1:

a: Ta có: AH\(\perp\)BM

OB\(\perp\)BM

Do đó: AH//OB

Ta có: BH\(\perp\)AM

OA\(\perp\)AM

Do đó: BH//OA

Xét tứ giác OAHB có

OA//HB

OB//HA

Do đó: OAHB là hình bình hành

Hình bình hành OAHB có OA=OB

nên OAHB là hình thoi

b: Xét ΔOAM vuông tại A có \(sinAMO=\dfrac{OA}{OM}=\dfrac{1}{2}\)

nên \(\widehat{AMO}=30^0\)

Xét (O) có

MA,MB là tiếp tuyến

Do đó: MO là phân giác của góc AMB

=>\(\widehat{AMB}=2\cdot\widehat{AMO}=2\cdot30^0=60^0\)

Bài 2:

a: Xét tứ giác CAOD có

\(\widehat{CAO}+\widehat{CDO}=90^0+90^0=180^0\)

=>CAOD là tứ giác nội tiếp

=>C,A,O,D cùng thuộc một đường tròn

b: Ta có: ΔCAO vuông tại A

=>\(CO^2=CA^2+AO^2\)

=>\(CO^2=\left(2R\right)^2+R^2=5R^2\)

=>\(CO=R\sqrt{5}\)

Xét ΔCAO vuông tại A có AH là đường cao

nên \(AH\cdot CO=AO\cdot AC\)

=>\(AH\cdot R\sqrt{5}=R\cdot2R=2R^2\)

=>\(AH=\dfrac{2R^2}{R\sqrt{5}}=\dfrac{2R}{\sqrt{5}}\)

Xét (O) có

CA,CD là tiếp tuyến

Do đó: CA=CD

=>C nằm trên đường trung trực của AD(1)

ta có: OA=OD

=>O nằm trên đường trung trực của AD(2)

Từ (1) và (2) suy ra OC là đường trung trực của AD

=>OC\(\perp\)AD tại H và H là trung điểm của AD

=>\(AD=2\cdot AH=\dfrac{4R}{\sqrt{5}}\)