Từ các chữ số 0,1,2,3,4,5 lập được bao nhiêu số tự nhiên có 4 chữ số khác nhau chia hết
cho 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số tự nhiên đó có dạng \(\overline{abcde}\)
a, a có 5 cách chọn.
b có 5 cách chọn.
c có 4 cách chọn.
d có 3 cách chọn.
e có 2 cách chọn.
\(\Rightarrow\) Có \(5.5.4.3.2=600\) số thỏa mãn.
b, TH1: \(e=0\)
a có 5 cách chọn.
b có 4 cách chọn.
c có 3 cách chọn.
d có 2 cách chọn.
\(\Rightarrow\) Có \(5.4.3.2=120\) số thỏa mãn.
TH2: \(e\ne0\)
a có 5 cách chọn.
e có 2 cách chọn.
b có 4 cách chọn.
c có 3 cách chọn.
d có 2 cách chọn.
\(\Rightarrow\) Có \(5.4.3.2.2=240\) số thỏa mãn.
Vậy có \(120+240=360\) số tự nhiên thỏa mãn yêu cầu bài toán.
c, TH1: \(e=0\Rightarrow\) có 120 số thỏa mãn.
TH2: \(e=5\)
a có 4 cách chọn.
b có 4 cách chọn.
c có 3 cách chọn.
d có 2 cách chọn.
\(\Rightarrow\) Có \(4.4.3.2=96\) số thỏa mãn.
Vậy có \(120+96=216\) số tự nhiên thỏa mãn yêu cầu bài toán.
Lời giải:
Gọi số thỏa mãn có dạng $\overline{a_1a_2a_3}$
Để số trên chia hết cho $3$ thì $a_1+a_2+a_3\vdots 3$
Thấy $3\leq a_1+a_2+a_3\leq 12$ nên $a_1+a_2+a_3\in \left\{3;6;9;12\right\}$
+) Để $a_1+a_2+a_3=3$ thì $(a_1,a_2,a_3)=(0,1,2)$
Ta lập được $2.2.1=4$ số thỏa mãn
+) Để $a_1+a_2+a_3=6$ thì $(a_1,a_2,a_3)=(0,1,5); (0,2,4); (1,2,3)$
Ta lập được $2.2.1+2.2.1+3.2.1=14$ số thỏa mãn
+) Để $a_1+a_2+a_3=9$ thì $(a_1,a_2,a_3)=(0,4,5); (1,3,5); (2,3,4)$
Ta lập được: $2.2.1+3.2.1+3.2.1=16$ số thỏa mãn
+) Để $a_1+a_2+a_3=12$ thì $(a_1,a_2,a_3)=(3,4,5)$
Ta lập được: $3.2.1=6$ số
Tóm lại lập được: $4+14+16+6=40$ số.
Gọi tập hợp E = {0,1,2,3,4,5}
b) Số tự nhiên có ba chữ số khác nhau có dạng
Trong E có các bộ chữ số thoả mãn (*) là: (0,1,2);(0,1,5);(0,2,4);(1,2,3);(1,3,5);(2,3,4);(3,4,5)
Mỗi bộ gồm ba chữ số khác nhau và khác 0 nên ta viết được 3*2*1 =6 số có ba chữ số chia hết cho 3
Mỗi bộ gồm ba chữ số khác nhau và có một chữ số 0 nên ta viết được 2*2*1 = 4 số có ba chữ số chia hết cho 3
Vậy theo quy tắc cộng ta có: 6*4 +4*3 =36 số có 3 chữ số chia hết cho 3 Chọn đáp án là A
Nhận xét :
- Học sinh có thể nhầm áp dụng quy tắc nhân cho kết quả: 64 *43 = 82944 số (phương án C)
- Học sinh có thể không để ý điều kiên a≠0 nên cho kết quả 6*7 =42 (phương án B)
- Học sinh có thể liệt kê bộ ba chữ số thoả mãn (*) còn thiếu nên không thể cho các kết quả A,B,C (phương án D)
ĐÁP ÁN A
cho số thỏa mãn dạng abc¯
để số abc chia hết cho 3 thì tổng của a,b,c chai hết cho 3, ta đặt tổng của a,b và c là m ( m∈{3, 6, 9, 12}
TH1: m=3, ta có (a,b,c) là (0,1,2) → có 4 trường hợp: (2.2.1)
TH2: m=6, ta có (a,b,c) là (0, 1, 5), (0, 2, 4) và (1, 2, 3) → có 14 trường hợp: (2.2.1)+ (2.2.1)+ (3.2.1)
TH3: m=9, ta có (a,b,c) là (0, 4, 5) ,(1, 3, 5) và (2, 3, 4) → có 16 trường hợp: (2.2.1)+(3.2.1)+ (3.2.1)
TH4: m=12, ta có (a. b. c) là (3, 4, 5) → có 6 trường hợp: ( 3.2.1)
cộng các trường hợp lại, ta có 4+14+16+6= 40 trường hợp, chọn D
a: \(\overline{abc}\)
a có 5 cách
b có 5 cách
c có 4 cách
=>Có 5*5*4=100 cách
b: \(\overline{abc}\)
a có 2 cách
b có 2 cách
c có 1 cách
=>Có 2*2*1=4 cách
c: \(\overline{abc}\)
a có 3 cách
b có 2 cách
c có 1 cách
=>Có 3*2*1=6 cách
Gọi tập hợp E = {0,1,2,3,4,5}
a) Số tự nhiên có hai chữ số khác nhau có dạng: a b ¯
Với b = 0 thì có 5 cách chọn a ( vì a ≠ 0) Với b = 5 thì có 4 cách chọn a ( vì a ≠ b và a ≠ 0)
Theo quy tắc cộng, có tất cả 5 + 4 = 9 số tự nhiên cần tìm.
Chọn đáp án là C.
Chọn C
Số có bốn chữ số có dạng : a b c d ¯
( a≠0,a,b,c,d∈ E={0,1,2,3,4,5})
Do a b c d ¯ không chia hết cho 5 nên có 4 cách chọn d( là 1,2,3,4)
Chọn a ∈ E\{0,d} nên có 4 cách chọn a
Chọn b ∈ E\{a,d} nên có 4 cách chọn b
Chọn c ∈ E\{a,b,d} nên có 3 cách chọn c
Theo quy tắc nhân, có 4*4*4*3=192 số
Có 5 cách chọn chữ số hàng chục ngàn ( Vì 0 ko thể được chọn là chữ số hàng chục ngàn )
Có 5 cách chọn chữ số hàng ngàn
Có 4 cách chọn chữ số hàng trăm
Có 3 cách chọn chữ số hàng chục
Có 2 cách chọn chữ số hàng đ.vị
Vậy có số số tự nhiên khác nhau được lập từ các số 0;1;2;3;4;5 là: 5 x 5 x 4 x 3 x 2 = 600 số
Ta "dán" 2 chữ số 3 và 3 liền với nhau thành chữ số kép. Có hai cách "dán" (23 hoặc 32). Bài toán trở thành: có 5 chữ số 0,1,4,5, số kép. Hỏi có thể lập được bao nhiêu số tự nhiên mỗi số có 5 chữ số khác nhau.
Ta giải bằng quy tắc nhân như sau:
Bước 1: Dán 2 số 2 và 3 với nhau. Có \(n_1\) = 2 cách
Bước 2: Số hàng vạn có \(n_2\) = 4 cách chọn (trừ số 0)
Bước 3: Số hàng nghìn có \(n_3\) = 4 cách chọn
Bước 4: Số hàng trăm có \(n_4\) = 3 cách chọn
Bước 5: Số hàng chực có \(n_5\) = 2 cách chọn
Bước 6: Số hàng đơn vị có \(n_6\) = 1 cách chọn
Theo quy tắc nhân số các số cần chọn là
n = \(n_1\)\(n_2\)\(n_3\)\(n_4\)\(n_5\)\(n_6\) = 2.4.4.3.2.1 = 192
Vậy có 192 số cần tìm.
Để lập được số tự nhiên có 4 chữ số khác nhau từ các chữ số 0, 1, 2, 3, 4, 5 và chia hết cho 2, ta phải chọn số cuối cùng là một chữ số chẵn. Các chữ số chẵn trong tập đã cho là 0, 2, 4.
Trường hợp 1: Số cuối cùng là 0
- Chữ số đầu tiên không thể là 0 (vì số đó sẽ trở thành số có 3 chữ số).
- Vậy chữ số đầu tiên có thể là 1, 2, 3, 4, 5 (5 cách chọn).
- Hai chữ số còn lại có thể chọn từ các chữ số còn lại sau khi đã loại bỏ chữ số đầu tiên và 0. Vậy có 4x3 = 12 cách chọn hai chữ số này.
Vậy trong trường hợp này có 5x12= 60 số.
Trường hợp 2: Số cuối cùng là 2 hoặc 4
- Chữ số cuối cùng có 2 lựa chọn (2 hoặc 4).
- Chữ số đầu tiên không thể là 0 hoặc chữ số cuối cùng (3 cách chọn nếu cuối là 2 hoặc 4).
- Hai chữ số ở giữa có thể chọn từ 4 chữ số còn lại (không bao gồm chữ số đầu tiên và chữ số cuối). Vậy có 4x3 =12 cách chọn hai chữ số này.
Vậy trong trường hợp này có 2x3x12= 72 số.
Tổng cộng có 60+72= 132 số tự nhiên có 4 chữ số khác nhau, được lập từ các chữ số 0, 1, 2, 3, 4, 5 và chia hết cho 2.