b) chứng minh ME vuông góc với NP
c)chứng minh ME+KN lớn hơn MP( có vẽ hình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự kẻ hình nha
a) - Vì tam giác MNP cân tại M (gt)
=> MN = MP (định nghĩa)
góc MNP = góc MPN (dấu hiệu)
- Vì NH vuông góc với MP (gt)
=> tam giác NHP vuông tại H
- Vì PK vuông góc với MN (gt)
=> tam giác PKN vuông tại K
- Xét tam giác vuông NHP và tam giác vuông PKN, có:
+ Chung NP
+ góc HPN = góc KNP (cmt)
=> tam giác vuông NHP = tam giác vuông PKN (cạnh huyền - góc nhọn)
b) Vì tam giác vuông NHP = tam giác vuông PKN (cmt)
=> góc HNP = góc KPN (2 góc tương ứng)
=> tam giác ENP cân tại E (dấu hiệu)
c) - Vì tam giác ENP cân tại E (cmt)
=> EN = EP (định nghĩa)
- Xét tam giác MNE và tam giác MPE, có:
+ Chung ME
+ MN = MP (cmt)
+ EN = EP (cmt)
=> tam giác MNE = tam giác MPE (ccc)
=> góc NME = góc PME (2 góc tương ứng)
=> ME là đường phân giác góc NMP (tc)
a: Xét ΔKNP vuông tại K và ΔHPN vuong tại H có
PN chung
góc KNP=góc HPN
=>ΔKNP=ΔHPN
b: Xét ΔENP có góc ENP=góc EPN
nên ΔENP cân tại E
c: Xét ΔMNE và ΔMPE có
MN=MP
NE=PE
ME chung
=>ΔMNE=ΔMPE
=>góc NME=góc PME
=>ME là phân giác của góc NMP
a: Xet ΔKNP vuông tại K và ΔHPN vuông tại H có
NP chung
góc KNP=góc HPN
=>ΔKNP=ΔHPN
b: ΔKNP=ΔHPN
=>góc ENP=góc EPN
=>ΔENP cân tại E
c: Xét ΔMKE vuông tại K và ΔMHE vuông tại H có
ME chung
MK=MH
=>ΔMKE=ΔMHE
=>góc KME=góc HME
=>ME là phân giác của góc NMP
a: Xét ΔKNP vuông tại K và ΔHPN vuông tại H có
PN chung
góc KNP=góc HPN
=>ΔKNP=ΔHPN
b: Xét ΔENP có góc ENP=góc EPN
nên ΔENP cân tại E
c: Xét ΔMNE và ΔMPE có
MN=MP
EN=EP
ME chung
=>ΔMNE=ΔMPE
=>góc NME=góc KME
=>ME là phân giác của góc NMP
a: ta có: ΔMNP cân tại M
mà MH là đường cao
nên H là trung điểm của NP
hay HN=HP
b: NH=NP/2=8/2=4(cm)
=>MH=3(cm)
c: Xét ΔMDH vuông tại D và ΔMEH vuông tại E có
MH chung
\(\widehat{DMH}=\widehat{EMH}\)
Do đó: ΔMDH=ΔMEH
Suy ra: HD=HE
hay ΔHED cân tại H
a) Xét ΔMNH vuông tại H và ΔMPH vuông tại H có
MN=MP(ΔMNP cân tại M)
MH chung
Do đó: ΔMHN=ΔMPH(cạnh huyền-cạnh góc vuông)
Suy ra: HN=HP(hai cạnh tương ứng)
b) Xét ΔINH vuông tại I và ΔEPH vuông tại E có
HN=HP(cmt)
\(\widehat{N}=\widehat{P}\)(Hai góc ở đáy của ΔMNP cân tại M)
Do đó: ΔINH=ΔEPH(cạnh huyền-góc nhọn)
Suy ra: HI=HE(Hai cạnh tương ứng)
Xét ΔHIE có HI=HE(cmt)
nên ΔHIE cân tại H(Định nghĩa tam giác cân)
a: Xét ΔKNP vuông tại K và ΔHPN vuông tại H có
NP chung
\(\widehat{KNP}=\widehat{HPN}\)
Do đó: ΔKNP=ΔHPN
b: Xét ΔMNP có
NH,PK là các đường cao
NH cắt PK tại E
Do đó: E là trực tâm của ΔNMP
=>ME\(\perp\)NP