Tìm số tự nhiên nhỏ nhất chia cho 3, cho 4, cho 5 có số dư lần lượt là 1 , 3, 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi n là số cần tìm.
Ta có: n – 1 là bội của 3, n – 3 là bội của 4, n – 1 là bội của 5
Suy ra: 2( n – 1) ⋮ 3 ;
2(n – 3) ⋮ 4 ;
2(n – 1) ⋮ 5
Do đó: 2n chia cho 3, 4, 5 đều dư 2. Nên 2n – 2 là BCNN của 3, 4, 5
2n – 2 = 60 ⇒ n = 31.
Gọi n là số cần tìm.
Ta có: n – 1 là bội của 3, n – 3 là bội của 4, n – 1 là bội của 5
Suy ra: 2( n – 1) ⋮ 3 ;
2(n – 3) ⋮ 4 ;
2(n – 1) ⋮ 5
Do đó: 2n chia cho 3, 4, 5 đều dư 2. Nên 2n – 2 là BCNN của 3, 4, 5
2n – 2 = 60 ⇒ n = 31.
TICK CHO MÌNH NHA
Trả lời:
Gọi số tự nhiên đó là a
Ta có: a:6, 5, 4, 3, 2 dư 5, 4, 3, 2, 1
➩ a+1 chia hết cho 6, 5, 4, 3, 2
➩ a+1 =60
➩ a=59
goi tư nhien a nho nhat la x(x thuoc N)
x:8 du 6 x+2 chia het 8
x:12du10 suy ra x+2 chia het 12
x:15du13 x+2chia het 15
suy ra x+2 chia het (8,12,15)
tu day cac ban tu lam nhe minh viet moi tay roi
Bài 1:
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).
Ta có 2n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3, 5, 7). Do 3, 5, 7 là các số nguyên tố cùng nhau nên BCNN(3, 5, 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53
Bài 2:
Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).
Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9) chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8, 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8, 31) có dạng 8.31m = 248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài
Bài 1:
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).
Ta có 2n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3, 5, 7). Do 3, 5, 7 là các số nguyên tố cùng nhau nên BCNN(3, 5, 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53
Vậy n = 53 là số tự nhiên nhỏ nhất thỏa điều kiện của đề bài
Bài 2:
Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).
Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9) chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8, 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8, 31) có dạng 8.31m = 248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài
Gọi số nhỏ nhất cần tìm là a (a\(\in\)N*)
Vì a chia 3 dư 1; chia 4 dư 3; chia 5 dư 1 nên
a - 1 chia hết cho 3
a - 3 chia hết cho 4 \(\Rightarrow\) a - 3 + 4= a - 1 chia hết cho 4
a - 1 chia hết cho 5
\(\Rightarrow\) a - 1 \(\in\) BC( 3; 4; 5)= { 0; 60; 120; 180;.......}
Vì a là số tự nhiên nhỏ nhất nên a = 60.
Vậy số tự nhiên nhỏ nhất cần tìm là 60
câu trả lời đúng là 31.
bạn trả lời ở trên là sai vì a - 3 + 4 không bằng a - 1 đâu nha