K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

ΔABC nội tiếp

BC là đường kính

Do đó: ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ABC}+30^0=90^0\)

=>\(\widehat{ABC}=60^0\)

Xét (O) có

\(\widehat{ACB}\)là góc nội tiếp chắn cung AB

nên \(\widehat{AOB}=2\cdot\widehat{ACB}=60^0\)

Độ dài cung tròn AB là:

\(l=\dfrac{\Omega\cdot R\cdot60}{180}=\Omega\cdot\dfrac{R}{3}\)

Diện tích hình quạt tròn ứng với cung AB là:

\(S_{q\left(AB\right)}=\dfrac{\Omega\cdot R^2\cdot60}{360}=\dfrac{\Omega\cdot R^2}{6}\)

b: Xét tứ giác AHCK có \(\widehat{AHC}+\widehat{AKC}=90^0+90^0=180^0\)

nên AHCK là tứ giác nội tiếp

c: Ta có:AHCK là tứ giác nội tiếp

=>\(\widehat{AHK}=\widehat{ACK}=\widehat{ACE}\)

Xét (O) có

\(\widehat{ADE}\) là góc nội tiếp chắn cung AE

\(\widehat{ACE}\) là góc nội tiếp chắn cung AE

Do đó: \(\widehat{ADE}=\widehat{ACE}\)

=>\(\widehat{AHK}=\widehat{ADE}\)

=>HK//DE

8 tháng 8 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy HA là tiếp tuyến của đường tròn (O)

3 tháng 4 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác EBF cân tại B nên HE = HF

Tam giác AEF vuông tại A có AH là đường trung tuyến ứng với cạnh huyền nên: HA = HE = HF = (1/2).EF (tính chất tam giác vuông)

Vậy tam giác AHF cân tại H.

6 tháng 10 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Gọi I là giao điểm của AD và BC

Vì BC là đường trung trực của AD nên theo tính chất đường trung trực ta có:

BA = BD

Tam giác BAD cân tại B có BI ⊥ AD nên BI là tia phân giác của góc ABD

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác EBF có BH là tia phân giác của góc EBF và BH ⊥ EF nên tam giác EBF cân tại B.

NV
13 tháng 1 2022

Do AB là đường kính và D thuộc đường tròn

\(\Rightarrow\widehat{ADB}\) là góc nội tiếp chắn nửa đường tròn

\(\Rightarrow\widehat{ADB}=90^0\) hay tam giác ADB vuông tại D

Xét tam với vuông ADB với đường cao DH, áp dụng hệ thức lượng ta có:

\(AD^2=AH.AB\) 

14 tháng 7 2017

a, Học sinh tự chứng minh

b, DADB vuông tại D, có đường cao DH Þ  A D 2  = AH.AB

c,  E A C ^ = E D C ^ = 1 2 s đ E C ⏜ ;  E A C ^ = K H C ^  (Tứ giác AKCH nội tiếp)

=> E D C ^ = K H C ^ => DF//HK (H là trung điểm DC nên K là trung điểm FC) => Đpcm

20 tháng 12 2020

1) Vì BC là đường kính của (O) nên BC=2R

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được: 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AB^2=BC^2-AC^2=\left(2R\right)^2-R^2=3R^2\)

hay \(AB=R\sqrt{3}\)(đvđd)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được: 

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot2R=R\cdot R\sqrt{3}\)

\(\Leftrightarrow AH=\dfrac{R^2\cdot\sqrt{3}}{2\cdot R}=\dfrac{R\sqrt{3}}{2}\)(đvđd)

Vậy: \(AB=R\sqrt{3}\)\(AH=\dfrac{R\sqrt{3}}{2}\)

2) Xét (O) có

OC là một phần đường kính

AD là dây

OC⊥AD tại H

Do đó: H là trung điểm của AD(Định lí đường kính vuông góc với dây)

\(HA=HD=\dfrac{AD}{2}\)

hay \(HA\cdot HD=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được: 

\(HB\cdot HC=AH^2\)(2)

Từ (1) và (2) suy ra \(HA\cdot HD=HB\cdot HC\)(đpcm)

20 tháng 12 2020

ban co the giup minh 2 y cuoi khong?

 

a: góc AEB=góc AHB=90 độ

=>AEHB nội tiếp

góc AGD=1/2*180=90 độ

=>GD vuông góc AH

=>GD//BC

b: ABHE nội tiếp

=>góc EHC=góc BAD

mà góc BAD=góc DCB

nên góc EHC=góc DCB

=>EH//CD

góc ACD=1/2*180=90 độ

=>AC vuông góc CD

=>EH vuông góc AC tại N

=>góc ANH=90 độ

a: Vì góc AEB=góc AHB=90 độ

=>AHBE nội tiếp

góc AGD=1/2*180=90 độ

=>AG vuông góc GD

=>GD//BC

b:

Xét ΔAHB vuông tại H và ΔACD vuông tạiC có

góc ABH=góc ADC

=>ΔAHB đồng dạng với ΔACD

=>góc BAH=góc DAC

góc NAH+góc NHA

=góc ABE+góc BAE=90 độ

=>ΔAHN vuông tại N

9 tháng 3 2023

giúp câu c nha mn