x,y,z>0,x+y+z=3. Chứng minh
\(\sqrt{3x+2y+z}+\sqrt{3y+2z+x}+\sqrt{3z+2x+y}\)≤3\(\sqrt{6}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với mọi a;b;c không âm ta có:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ca\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)
Áp dụng:
a.
\(VT\le\sqrt{3\left(x+7+y+7+z+7\right)}=\sqrt{3\left(6+21\right)}=9\)
Dấu "=" xảy ra khi \(x=y=z=2\)
b.
\(VT\le\sqrt{3\left(3x+2y+3y+2z+3z+2x\right)}=\sqrt{15\left(x+y+z\right)}=\sqrt{15.6}=3\sqrt{10}\)
Dấu "=" xảy ra khi \(x=y=z=2\)
c.
\(VT\le\sqrt{3\left(2x+5+2y+5+2z+5\right)}=\sqrt{3\left(2.6+15\right)}=9\)
Dấu "=" xảy ra khi \(x=y=z=2\)
\(\hept{\begin{cases}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{z}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{cases}}\)
\(\Leftrightarrow x^2-2x\sqrt{y}+2y+y^2-2y\sqrt{z}+2z+z^2-2z\sqrt{x}+2x=x+y+z\)
\(\Leftrightarrow\left(x-\sqrt{y}\right)^2+\left(y-\sqrt{z}\right)^2+\left(z-\sqrt{x}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\sqrt{y}=0\\y-\sqrt{z}=0\\z-\sqrt{x}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\sqrt{y}\\y=\sqrt{z}\\z=\sqrt{x}\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=y=z=0\\x=y=z=1\end{cases}}\)
\(\sqrt{x^2+y^2+y^2}\ge\sqrt{3\sqrt[3]{x^2y^4}}=\sqrt{3}.\sqrt[3]{xy^2}\)
\(\Rightarrow VT\ge\sqrt{3}\left(\frac{\sqrt[3]{xy^2}}{z}+\frac{\sqrt[3]{yz^2}}{x}+\frac{\sqrt[3]{zx^2}}{y}\right)\)
\(\Rightarrow VT\ge3\sqrt{3}\sqrt[3]{\frac{\sqrt[3]{xy^2.yz^2.zx^2}}{xyz}}=3\sqrt{3}.\sqrt[3]{\frac{\sqrt[3]{x^3y^3z^3}}{xyz}}=3\sqrt{3}\)
Dấu "=" xảy ra khi \(x=y=z\)
\(VT=\sum\sqrt{\frac{1}{2}\left(x^2+2xy+y^2\right)+\frac{3}{2}\left(x^2+y^2\right)}\)
\(VT\ge\sum\sqrt{\frac{1}{2}\left(x+y\right)^2+\frac{3}{4}\left(x+y\right)^2}=\sum\sqrt{\frac{5}{4}\left(x+y\right)^2}\)
\(VT\ge\frac{\sqrt{5}}{2}\left(x+y\right)+\frac{\sqrt{5}}{2}\left(y+z\right)+\frac{\sqrt{5}}{2}\left(z+x\right)\)
\(VT\ge\sqrt{5}\left(x+y+z\right)=\sqrt{5}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
Đề sai, nếu \(x+y+z=3\) thì vế phải là \(3\sqrt{3}\)
Muốn vế phải là 3 thì \(x+y+z=1\)
\(VT\le\sqrt{3\left(x+2y+y+2z+z+2x\right)}=\sqrt{9\left(x+y+z\right)}=3\sqrt{3}\)
Áp dụng BĐT Cauchy-Schwarz ta có: VT\le \sqrt{3\sum \frac{x}{z+3x}}
Ta cần chứng minh \sum \frac{x}{z+3x} \leq \frac{3}{4}
\leftrightarrow \sum \frac{3x}{z+3x} \leq \frac{9}{4}
\leftrightarrow \sum(1-\frac{3x}{z+3x}) \geq \frac{3}{4}
\leftrightarrow \sum \frac{z}{z+3x} \geq \frac{3}{4}
Áp dụng BĐT Cauchy-Schwarz ta có:
\sum \frac{z}{z+3x}=\sum \frac{z^2}{z^2+3xz} \geq \frac{(x+y+z)^2}{x^2+y^2+z^2+3(xy+yz+zx)}=\frac{(x+y+z)^2}{(x+y+z)^2+xy+yz+zx} \geq \frac{(x+y+z)^2}{(x+y+z)^2+\frac{(x+y+z)^2}{3}}=\frac{3}{4}
Dấu "=" xảy ra khi x=y=z
P/s:OLM chặn paste r` mà có vài công thức OLM ko có nên mk ko paste dc đành gõ = latex thông cảm, trách thì trách OLM, ko hiểu dc thì bảo Ad dịch hộ
Ta có: \(\left(x-\sqrt{yz}\right)^2\ge0\Rightarrow x^2+yz\ge2x\sqrt{yz}\)(Dấu "="\(\Leftrightarrow x^2=yz\))
Theo đề: x + y + z = 3\(\Rightarrow3x+yz=\left(x+y+z\right)x+yz=x^2+yz+x\left(y+z\right)\)\(\ge x\left(y+z\right)+2x\sqrt{yz}\)
Suy ra \(\sqrt{3x+yz}\ge\sqrt{x\left(y+z\right)+2x\sqrt{yz}}=\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)\)
và \(x+\sqrt{3x+yz}\ge\sqrt{x}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
\(\Rightarrow\frac{x}{x+\sqrt{3x+yz}}\le\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Tương tự ta có: \(\frac{y}{y+\sqrt{3y+zx}}\le\frac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\);\(\frac{z}{z+\sqrt{3z+xy}}\le\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Cộng từng vế của các BĐT trên,ta được:
\(\frac{x}{x+\sqrt{3x+yz}}\)\(+\frac{y}{y+\sqrt{3y+zx}}\)\(+\frac{z}{z+\sqrt{3z+xy}}\le1\)
(Dấu "="\(\Leftrightarrow x=y=z=1\))
We have:
\(VT=\Sigma_{cyc}\frac{x}{x+\sqrt{3x+yz}}=\Sigma_{cyc}\frac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}=\Sigma_{cyc}\frac{\frac{x}{\sqrt{\left(x+y\right)\left(z+x\right)}}}{\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}+1}\)
Dat \(\left(\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}};\frac{y}{\sqrt{\left(x+y\right)\left(y+z\right)}};\frac{z}{\sqrt{\left(x+z\right)\left(y+z\right)}}\right)=\left(a;b;c\right)\)
Consider:
\(\Sigma_{cyc}\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\Sigma_{cyc}\frac{\frac{x}{x+y}+\frac{x}{x+z}}{2}=\frac{3}{2}\)
\(\Rightarrow a+b+c\le\frac{3}{2}\)
Now we need to prove:
\(\Sigma_{cyc}\frac{a}{a+1}\le1\)
\(\Leftrightarrow\Sigma_{cyc}\frac{1}{a+1}\ge2\left(M\right)\)
\(VT_M\ge\frac{9}{a+b+c+3}\ge\frac{9}{\frac{3}{2}+3}=2\)
Sign '=' happen when \(\hept{\begin{cases}x=y=z=1\\a=b=c=\frac{1}{2}\end{cases}}\)
Áp dụng BĐT Cô-si:
\(\sqrt{3x+2y+z}+\sqrt{3y+2z+x}+\sqrt{3z+2x+y}\)
\(=\dfrac{1}{2\sqrt{6}}.\left(2.\sqrt{6}.\sqrt{3x+2y+z}+2.\sqrt{6}.\sqrt{3y+2z+x}+2.\sqrt{6}.\sqrt{3z+2x+y}\right)\)
\(\le\dfrac{1}{2\sqrt{6}}\left(6+3x+2y+z+6+3y+2z+x+6+3z+2x+y\right)\)
\(=\dfrac{1}{2\sqrt{6}}\left(6x+6y+6z+18\right)=\dfrac{36}{2\sqrt{6}}=3\sqrt{6}\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z=1\)