Tim x biết x-2 / 3 - 2=1/2 - 2x - 3/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
a: \(\left(x+\dfrac{1}{4}\right)+\left(3x-4\right)+2\left(x-3\right)=1\)
=>\(x+\dfrac{1}{4}+3x-4+2x-6=1\)
=>\(6x-\dfrac{39}{4}=1\)
=>\(6x=1+\dfrac{39}{4}=\dfrac{43}{4}\)
=>\(x=\dfrac{43}{4}:6=\dfrac{43}{24}\)
b: \(2\left(x-3\right)=3\left(x+2\right)-x+1\)
=>\(2x-6=3x+6-x+1\)
=>2x-6=2x+7
=>-6=7(vô lý)
c: \(x\left(x+3\right)+x\left(x-2\right)=2x\left(x-1\right)\)
=>\(x^2+3x+x^2-2x=2x^2-2x\)
=>3x-2x=-2x
=>3x=0
=>x=0
d: \(\left(x-1\right)\cdot3x-2\left(x+2\right)-2x=x\left(x-1\right)\)
=>\(3x^2-3x-2x-4-2x=x^2-x\)
=>\(3x^2-7x-4-x^2+x=0\)
=>\(2x^2-6x-4=0\)
=>\(x^2-3x-2=0\)
=>\(x=\dfrac{3\pm\sqrt{17}}{2}\)
\(\left(x+\frac{2}{3}\right)\left(\frac{5}{4}-2x\right)>0\)
th1 :
\(\hept{\begin{cases}x+\frac{2}{3}>0\\\frac{5}{4}-2x>0\end{cases}\Rightarrow\hept{\begin{cases}x>-\frac{2}{3}\\-2x>-\frac{5}{4}\end{cases}\Rightarrow}\hept{\begin{cases}x>-\frac{2}{3}\\x>\frac{5}{8}\end{cases}\Rightarrow}x>\frac{5}{8}}\)
th2 :
\(\hept{\begin{cases}x+\frac{2}{3}< 0\\\frac{5}{4}-2x< 0\end{cases}\Rightarrow\hept{\begin{cases}x< -\frac{2}{3}\\-2x< -\frac{5}{4}\end{cases}\Rightarrow}\hept{\begin{cases}x< -\frac{2}{3}\\x< \frac{5}{8}\end{cases}\Rightarrow}x< -\frac{2}{3}}\)
vậy_
câu trên mk làm rồi
\(\dfrac{2x-1}{x-3}=\dfrac{2x+3}{x-1}\)
\(\Rightarrow\left(2x-1\right)\left(x-1\right)=\left(x-3\right)\left(2x+3\right)\)
\(\Rightarrow2x^2-x-2x+1=2x^2-6x+3x-9\)
\(\Rightarrow-x-2x+6x-3x=-1-9\)
\(\Rightarrow0=-10\) (vô lí)
Vậy ko tồn tại giá trị của x.
\(\left|x-\dfrac{1}{2}\right|\left|2x-\dfrac{3}{4}\right|=2x-\dfrac{3}{4}\)
\(\left\{{}\begin{matrix}\left|x-\dfrac{1}{2}\right|\ge0\\\left|2x-\dfrac{3}{4}\right|\ge0\end{matrix}\right.\)
\(\Rightarrow2x-\dfrac{3}{4}\ge0\)
\(\Rightarrow\left|2x-\dfrac{3}{4}\right|=2x-\dfrac{3}{4}\)
\(\Rightarrow\left|x-\dfrac{1}{2}\right|=1\)
\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=1\Rightarrow x=\dfrac{3}{2}\\x-\dfrac{1}{2}=-1\Rightarrow x=-\dfrac{1}{2}\end{matrix}\right.\)
\(2x-\dfrac{3}{4}\ge0\Rightarrow2x\ge\dfrac{3}{4}\Rightarrow x\ge\dfrac{3}{2}\)
Vậy xảy ra khi:
\(x=\dfrac{3}{2}\)