x - 1/24 = -1/8 + 5/6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{1}{8}\cdot\dfrac{4}{5}:\dfrac{3}{5}=\dfrac{1}{10}\cdot\dfrac{5}{3}=\dfrac{1}{2\cdot3}=\dfrac{1}{6}\)
b: \(=\dfrac{8-3}{12}\cdot\dfrac{6}{5}=\dfrac{6}{12}=\dfrac{1}{2}\)
c: \(=\dfrac{24}{35}:\dfrac{32}{35}=\dfrac{3}{4}\)
d: =63/21+15/21-7/21=71/21
a \(\dfrac{1}{8}\times\dfrac{4}{5}\times\dfrac{10}{6}=\dfrac{1}{6}\)
b \(\left(\dfrac{8}{12}-\dfrac{3}{12}\right)\times\dfrac{6}{5}=\dfrac{5}{12}\times\dfrac{6}{5}=\dfrac{1}{2}\)
c \(\dfrac{24}{35}:\dfrac{32}{35}=\dfrac{24}{35}\times\dfrac{35}{32}=\dfrac{3}{4}\)
d \(\dfrac{63}{21}+\dfrac{15}{21}-\dfrac{7}{21}=\dfrac{71}{21}\)
`1/8+(2x+5)/24=(3x+5)/2+x/6`
`=>3+2x+5=12(3x+5)+4x`
`=>2x+8=36x+60+4x`
`=>2x+8=40x+60`
`=>38x=-52`
`=>x=-26/19`
Vậy `x=-26/19`
a)15/8+3/4-5/12
=45+18-10/24
=53/24
b)11/24.12/33+5/6
=11.12/12.2.11.3+5/6
=1/6+5/6
=6/6=1
c)15/8+7/24:5/8
=15/8+7/24.8/5
=15/8+7.8/3.8.5
=15/8+7/15
=đề sai, nếu đúng thì như này
=8/15+7/15
=15/15=1
a) \(\dfrac{x}{5}=\dfrac{2}{5}\)
\(\Rightarrow5x=10\)
\(\Leftrightarrow x=2\)
Vậy x = 2
b) ĐKXĐ: \(x\ne0\)
\(\dfrac{3}{-8}=\dfrac{6}{-x}\)
\(\Rightarrow-3x=-48\)
\(\Leftrightarrow x=16\)
Vậy x = 16
c) \(\dfrac{1}{9}=\dfrac{-2x}{10}\)
\(\Rightarrow-18x=10\)
\(\Leftrightarrow x=-\dfrac{5}{9}\)
Vậy \(x=-\dfrac{5}{9}\)
d) ĐKXĐ: \(x\ne0\)
\(\dfrac{3}{x}-5=\dfrac{-9}{x}+2\)
\(\Leftrightarrow\dfrac{3-5x}{x}=\dfrac{-9+2x}{x}\)
\(\Rightarrow3-5x=-9+2x\)
\(\Leftrightarrow7x=12\)
\(\Leftrightarrow x=\dfrac{12}{7}\)
Vậy \(x=\dfrac{12}{7}\)
e) ĐKXĐ: \(x\ne0\)
\(\dfrac{x}{-2}=\dfrac{-8}{x}\)
\(\Rightarrow x^2=16\)
\(\Leftrightarrow x=\pm4\)
Vậy \(x=\pm4\)
a) Ta có: \(\dfrac{x}{5}=\dfrac{2}{5}\)
\(\Leftrightarrow x=\dfrac{2\cdot5}{5}=2\)
Vậy: x=2
b) Ta có: \(\dfrac{3}{-8}=\dfrac{6}{-x}\)
\(\Leftrightarrow-x=\dfrac{6\cdot\left(-8\right)}{3}=-16\)
hay x=16
Vậy: x=16
\(x-\dfrac{1}{24}=\dfrac{-1}{8}+\dfrac{5}{6}\)
=>\(x-\dfrac{1}{24}=\dfrac{-3}{24}+\dfrac{20}{24}=\dfrac{17}{24}\)
=>\(x=\dfrac{17}{24}+\dfrac{1}{24}=\dfrac{18}{24}=\dfrac{3}{4}\)