K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2017

đặt \(t=a+\frac{2}{a}\)

25 tháng 7 2018

Đặt \(b=a+\frac{2}{a}\Rightarrow b^2=a^2+4+\frac{4}{a^2}\Rightarrow a^2+\frac{4}{a^2}=b^2-4.\)

\(\Rightarrow A=\sqrt{\left(b^2-4\right)^2-8b^2+48}\)

\(=\sqrt{b^4-16b^2+64}\)

\(=\sqrt{\left(b^2-8\right)^2}=\left|b^2-8\right|\)

\(=\left|a^2+\frac{4}{a^2}-4\right|=\left|\left(a-\frac{2}{a}\right)^2\right|=\left(a-\frac{2}{a}\right)^2\)

11 tháng 7 2017

đúng rồi ak bạn. Bạn nên đặt \(t=a+\frac{2}{a}\)cho dễ làm nhé

1 tháng 7 2015

\(A=\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{\left(a^2+b^2\right)^2}=\frac{\left(a^4+b^4\right)\left(a^2+b^2\right)^2+a^4b^4}{a^4b^4\left(a^2+b^2\right)^2}\)

\(=\frac{\left(a^4+b^4\right)\left(a^4+b^4+2a^2b^2\right)+a^4b^4}{\left[a^2b^2\left(a^2+b^2\right)\right]^2}=\frac{\left(a^4+b^4\right)^2+2a^2b^2\left(a^4+b^4\right)+\left(a^2b^2\right)^2}{\left[a^2b^2\left(a^2+b^2\right)\right]^2}\)

\(=\frac{\left(a^4+b^4+a^2b^2\right)^2}{\left[a^2b^2\left(a^2+b^2\right)\right]^2}\)

\(\Rightarrow B=\frac{1}{a^2+b^2}+\frac{1}{\left(a+b\right)^2}+\sqrt{A}\)\(=\frac{1}{a^2+b^2}+\frac{1}{\left(a+b\right)^2}+\frac{\left(a^2+b^2\right)^2-a^2b^2}{a^2b^2\left(a^2+b^2\right)}\)

\(=\frac{1}{a^2+b^2}+\frac{1}{\left(a+b\right)^2}+\frac{a^2+b^2}{a^2.b^2}-\frac{1}{a^2+b^2}\)

\(=\)\(\frac{\left(a^2+b^2\right)\left(a+b\right)^2+a^2b^2}{a^2b^2\left(a+b\right)^2}=\frac{\left(a^2+b^2\right)\left(a^2+b^2+2ab\right)+a^2b^2}{\left[ab\left(a+b\right)\right]^2}\)

\(=\frac{\left(a^2+b^2\right)^2+2\left(a^2+b^2\right).ab+\left(ab\right)^2}{\left[ab\left(a+b\right)\right]^2}\)

\(=\frac{\left(a^2+b^2+ab\right)^2}{\left[ab\left(a+b\right)\right]^2}=\left[\frac{a^2+b^2+ab}{ab\left(a+b\right)}\right]^2\)

\(\Rightarrow\sqrt{B}=\left|\frac{a^2+b^2+ab}{ab\left(a+b\right)}\right|=\frac{a^2+b^2+ab}{\left|ab\left(a+b\right)\right|}\)