tính nhanh (-1)+3+(-5)+7+.....................+(-101)+103
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 + 2 - 3 - 4 + 5 + 6 -7 -8 + 9+...+101 + 102 - 103 - 104
= (1+2 - 3 - 4) + (5 + 6 -7 - 8) +...+ (101 + 102 - 103 - 104)
= -4.24
= -96
Áp dụng công thức tính dãy số ta có :
\(\frac{\left[\left(103-1\right):2+1\right].\left(103+1\right)}{2}=\frac{52.104}{2}=52.52=2704\)
tính nhanh đố ai làm được
1+3+5+7+9+...101+103
bài này dễ
Số số hạng : ( 103 - 1 ) : 2 + 1 = 52
Tổng là : ( 1 + 103 ) . 52 : 2 = 2704
k nha
a)
Chia ra từng nhóm, mỗi nhóm gồm 4 số, 2 dấu + và 2 dấu - liên tiếp nhau.
(+1+2-3-4)=-4
(+5+6-7-8)=-4
(+9+10-11-12)=-4
...
(+97+98-99-100)=-4
Vậy cho tới số 100, chia được số nhóm là:
100:4=25 nhóm như vậy,
Suy ra, tổng từ +1 đến -100 là:
25.(-4)=-100
Phần còn lại bạn ghi không rỏ nên không biết cộng đến số bao nhiêu?
Theo như trên, thì
S=(-100)+101+102=103
Đáp số:
S=103
b)
Ta thấy : 3 - 1= 2
5 - 3 = 2
7 - 5 = 2
......
99 - 97=2. Như vậy đây là dãy số cách đều, mỗi số hạng cách số liền kề hai đơn vị . Số số hạng là:( 99 - 1 ) : 2 + 1 = 50 ( số hạng).
Ta sắp xếp thành các cặp số ta có số cặp số là:
50:2=25( cặp số )
A=( 1 - 3 )+ ( 5 - 7) + ( 9 - 11) + .....+ ( 97 - 99) +101
= (- 2) + (- 2 )+ (- 2 )+ ....+ (- 2 )+ 101
= - 2 x 2 5 +101
= - 50+101
= 51
A = 1 + (-2) + (-3) + 4 + 5 + (-6) + (-7) + 8 + .......... + 99 - 100 - 101 + 102 + 103
A = 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + ................ + 99 - 100 - 101 + 102 + 103
A = ( 1 - 2 - 3 + 4 ) + ( 5 - 6 - 7 + 8 ) + ............. + ( 99 - 100 - 101 + 102 ) + 103
A = 0 + 0 + ............. + 0 + 103
A = 0 + 103
A = 103
Tính nhanh:
a) 1-2-3+4+5-6-7+8+9-10-.......+200+201-202-203
Đặt \(A=\text{1-2-3+4+5-6-7+8+9-10-.......+200+201-202-203}\)
\(A=1+\left(2-3-4+5\right)+\left(6-7-8=9\right)+\left(10-11-12+13\right)+... \)\(+\left(298-299-300+301\right)+302\)
\(A=1+0+0+0+...+0+302\)
\(A=1+302\)
\(A=303\)
Phần B làm sau nha!
\(\frac{1}{3}\times\frac{3}{5}\times\frac{5}{7}\times...\times\frac{99}{101}\times\frac{101}{103}\)
\(=\frac{1\times3\times5\times...\times99\times101}{3\times5\times7\times...\times101\times103}\)
\(=\frac{1}{103}\)
Xét biểu thức phụ : \(\frac{1}{\left(2n+3\right)\sqrt{2n+1}+\left(2n+1\right)\sqrt{2n+3}}=\frac{1}{\sqrt{2n+1}.\sqrt{2n+3}\left(\sqrt{2n+1}+\sqrt{2n+3}\right)}\)
\(=\frac{\sqrt{2n+3}-\sqrt{2n+1}}{\sqrt{2n+1}.\sqrt{2n+3}\left[\left(2n+3\right)-\left(2n+1\right)\right]}\)
\(=\frac{\sqrt{2n+3}-\sqrt{2n+1}}{2\sqrt{2n+1}.\sqrt{2n+3}}=\frac{1}{2}\left(\frac{1}{\sqrt{2n+1}}-\frac{1}{\sqrt{2n+3}}\right)\)với \(n\ge1\)
Áp dụng : \(S=\frac{1}{3\sqrt{1}+1\sqrt{3}}+\frac{1}{3\sqrt{5}+5\sqrt{3}}+\frac{1}{5\sqrt{7}+7\sqrt{5}}+...+\frac{1}{101\sqrt{103}+103\sqrt{101}}\)
\(=\frac{1}{2}\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{3}}\right)+\frac{1}{2}\left(\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{5}}\right)+\frac{1}{2}\left(\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{7}}\right)+...+\frac{1}{2}\left(\frac{1}{\sqrt{101}}-\frac{1}{\sqrt{103}}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{5}}+\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{7}}+...+\frac{1}{\sqrt{101}}-\frac{1}{\sqrt{103}}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{\sqrt{103}}\right)\)