Cho biểu thức A=\(1+4+4^2+4^3+...+4^{99}\)
a) 3A+1 là lũy thừa của 4
b) A chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A=4+42+43+...4100 => 4A=42+43+44+...+4101
=> 4A-A=4101-4 <=> 3A=4101-4 <=> 3A-4=4101 =>đpcm
b) Tương tự
Lời giải:
$A-1=4+4^2+4^3+...+4^{2020}+4^{2021}$
$4(A-1)=4^2+4^3+4^4+....+4^{2021}+4^{2022}$
$\Rightarrow 4(A-1)-(A-1)=4^{2022}-4$
$3(A-1)=4^{2022}-4$
$\Rightarrow 3A+1=4^{2022}\vdots 4^{2021}$
1 .
Tính chất | Phép cộng | Phép nhân |
Giao hoán | a + b = b +a | a . b = b . a |
Kết hợp | ( a + b ) + c = a + (b + c) | (a . b) . c = a . ( b . c ) |
Phân phối của phép nhân với phép cộng | ( a + b ) . c = a . b + b . c |
2 . Luỹ thừa bậc n của a là tích của n thừa số bằng nhau , mỗi thừa số bằng a
3 . am . an = am + n
am : an = am - n
4 . Ta nói số tự nhiên a chia hết cho số tự nhiên b khi có số tự nhiên q sao cho : a = bq
5 . Đối với biểu thức không có ngoặc :
Ta thực hiện phép tính nâng lên luỹ thừa , rồi đến nhân và chia , cuối cùng là cộng và trừ
Tổng quát : Luỹ thừa -> Nhân và chia -> Cộng và trừ
Đối với biểu thức có dấu ngoặc
Từ ngoặc tròn đến ngoặc vuông rồi cuối cùng đến ngoặc vuông
Tổng quát : ( ) -> [ ] -> { }
Bài 1 : Ta có : S = 1 + 2 + 22 + 23 + ... + 29
2S = 2(1 + 2 + 22 + 23 + ... + 29)
2S = 2 + 22 + 23 + ... + 210
2S - S = (2 + 22 + 23 + ... + 210) - (1 + 2 + 22 + 23 + ... + 29)
S = 210 - 1 = 28.4 - 1
Vậy S < 5 x 28
b: \(A=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)
\(=13\left(3+...+3^{58}\right)⋮13\)
\(a,\Leftrightarrow2A=8+2^3+2^4+...+2^{21}\\ \Leftrightarrow2A-A=8+2^3+2^4+...+2^{21}-4-2^2-2^3-...-2^{20}\\ \Leftrightarrow A=2^{21}+8-4-2^2=2^{21}\left(đpcm\right)\\ b,A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\\ A=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\\ A=\left(1+3+3^2\right)\left(3+3^4+...+3^{58}\right)\\ A=13\left(3+3^4+...+3^{58}\right)⋮13\)
Bài 1
a) 34 + 35 + 36 + 37 = 34(1 + 3 + 32 + 33)\
b) a)A = 1 + 3 + 32 +......399 =(1 + 3 + 32 + 33 ) + ...+(396 + 397 + 398 + 399)
= (1 + 3 + 32 + 33 ) + .. +396(1 + 3 + 32 + 33 )
= 40 + ... + 396 . 40
= 40 (1 + 3 +...+ 396) chia hết cho 40
Bài 2
a)
+)A chia hết cho 6
\(A=5+5^2+5^3+...+5^{2004}\)
\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2003}+5^{2004}\right)\)
\(A=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{2002}\left(5+5^2\right)\)
\(A=30+5^2.30+...+5^{2002}.30\)
\(A=30\left(1+5^2+...+5^{2002}\right)\)chia hết cho 6
+)A chia hết cho 31
\(A=5+5^2+5^3+...+5^{2004}\)
\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{2002}+5^{2003}+5^{2004}\right)\)
\(A=\left(5+5^2+5^3\right)+5^3\left(5+5^2+5^3\right)+...+5^{2001}\left(5+5^2+5^3\right)\)
\(A=155+5^3.155+...+5^{2001}.155\)
\(A=155\left(1+5^3+...+5^{2001}\right)\)chia hết cho 31
+) A chia hết cho 156
\(A=5+5^2+5^3+...+5^{2004}\)
\(A=\left(5+5^2+5^3+5^4\right)+\left(5^5+5^6+5^7+5^8\right)+...+\left(5^{2001}+5^{2002}+5^{2003}+5^{2004}\right)\)
\(A=\left(5+5^2+5^3+5^4\right)+5^4\left(5+5^2+5^3+5^4\right)+...+5^{2000}\left(5+5^2+5^3+5^4\right)\)
\(A=780+5^4.780+...+5^{2000}.780\)
\(A=780\left(1+5^4+...+5^{2000}\right)\)chia hết cho 156
b)B=165+2^15 chia hết cho 33
ta có 165 chia hết cho 33
mà 215 ko chia hết cho 33
vậy 165+2^15 không chia hết cho 33 hay B không chia hết cho 33.
a/ Tính \(A=1+4+4^2+4^3+...+4^{99}\)
\(\Rightarrow4A=4+4^2+4^3+4^4+...+4^{100}\)
\(\Rightarrow4A-A=4^{100}-1\)
\(\Rightarrow3A=4^{100}-1\Rightarrow3A+1=4^{100}\)
Vậy 3A+1 là Lũy thừa của 4 ( ĐPCM)
b) \(A=1+4+4^2+...+4^{99}\)
\(=\left(1+4\right)+\left(4^2+4^3\right)+...+\left(4^{98}+4^{99}\right)\)
\(=\left(1+4\right)+4^2\left(1+4\right)+...+4^{98}\left(1+4\right)\)
\(\Rightarrow A⋮5\RightarrowĐPCM\)
\(=5\left(1+4^2+...+4^{98}\right)\)