Tìm giá trị lớn nhất (hoặc nhỏ nhất)của các biểu thức:
\(A=\left(x+\frac{2}{3}\right)^2+\frac{1}{2}\:,\:X\in Q\)
\(B=\frac{2}{\left(x-\frac{1}{2}\right)^2+2}\)với x€Q
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
a, Để A lớn nhất thì \(\left(x+\frac{1}{2}\right)^2\) phải nhỏ nhất
Mà \(\left(x+\frac{1}{2}\right)^2>=0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2=0\)
\(\Rightarrow A=3,5-\left(x+\frac{1}{2}\right)^2\)có giá trị lớn nhất là 3,5
b, Để B đạt giá trị nhỏ nhất thì \(8-\left(x+\frac{1}{3}\right)^2\)phải lớn nhất
\(8-\left(x+\frac{1}{3}\right)^2\)lớn nhất thì \(\left(x+\frac{1}{3}\right)^2\)nhỏ nhất
tương tự câu a ta có \(\left(x+\frac{1}{3}\right)^2=0\Rightarrow\)\(8-\left(x+\frac{1}{3}\right)^2=8\)
\(\Rightarrow B=\frac{3}{8-\left(x+\frac{1}{3}\right)^2}\)đạt giá trị nhỏ nhất là \(\frac{3}{8}\)
để A có GTLN thì 2(x-1)2 + 3 phải bé nhất
mà 2(x-1)2 luôn > hoặc = 0
=> A có GTLN thì 2(x-1)2 + 3 = 3
=> x=1
GTLN of A là 1/3 khi và chỉ khi x = 1
để B có GTLN thì 17-x > 0 và bé nhất
=> 17-x = 1
=> x = 16
GTLN của B = 1 khi và chỉ khi x=16
a)Ta thấy:
\(-\left|\frac{1}{3}x+2\right|\le0\)
\(\Rightarrow5-\left|\frac{1}{3}x+2\right|\le5-0=5\)
\(\Rightarrow B\le5\)
Dấu "=" xảy ra khi x=-6
Vậy MaxB=5<=>x=-6
b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\).Ta có:
\(\left|\frac{1}{2}x-3\right|+\left|\frac{1}{2}x+5\right|\ge\left|\frac{1}{2}x-3+5-\frac{1}{2}x\right|=2\)
\(\Rightarrow C\ge2\)
Dấu "=" xảy ra khi \(\orbr{\begin{cases}x=6\\x=-10\end{cases}}\)
Vậy MinC=2<=>x=6 hoặc -10
a, \(A=\left(\frac{4}{2x+1}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\left(\frac{4\left(x^2+1\right)}{\left(2x+1\right)\left(x^2+1\right)}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\left(\frac{4x^2+4+4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\frac{\left(2x+1\right)^2}{\left(x^2+1\right)\left(2x+1\right)}\frac{x^2+1}{x^2+2}=\frac{2x+1}{x^2+2}\)
+> Amin =\(\frac{1}{2}\)\(\Leftrightarrow\)\(X+\frac{2}{3}\)\(=0\)\(\Leftrightarrow x=\frac{-2}{3}\)
+> Ta có : \(\left(x-\frac{1}{2}\right)^2\)\(\ge0\)với mọi x \(\in Q\)\(\Rightarrow\)\(\left(x-\frac{1}{2}\right)^2\)\(+2\ge2>0\)với mọi x thuộc Q \(\Rightarrow B=\frac{2}{\left(x-\frac{1}{2}\right)^2+2}\le\frac{2}{2}=1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
a, Vì \(\left(x+\frac{2}{3}\right)^2\ge0\forall x\Rightarrow A=\left(x+\frac{2}{3}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
Dấu "=" xảy ra khi x = -2/3
VẬy GTNN của A = 1/2 khi x = -2/3
b, Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\frac{1}{2}\right)^2+2\ge2\Rightarrow\frac{1}{\left(x-\frac{1}{2}\right)^2+2}\le\frac{1}{2}\Rightarrow B=\frac{2}{\left(x-\frac{1}{2}\right)^2+2}\le\frac{2}{2}=1\)
Dấu "=" xảy ra khi x = 1/2
Vậy GTLN của B = 1 khi x = 1/2