K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Nhận thấy từng số hạng của S chia hết cho 3 nên `S vdots 3`.

`S = (3^1+3^2+3^3+3^4) + (3^5+3^6+3^7+3^8) + ... +(3^49+3^50+3^51+3^52) + 3^53`.

`= (3+9+27+81) + 3^4(3+9+27+81) + ... + 3^49(3+9+27+81)+3^53`.

`= 120 + 3^4. 120 + ... + 3^49.120+ 3^53`.

`= 120(1+3^4+...+3^49) + 3^53`.

Do `120 vdots 5 => 120(1+3^4+...+3^49) vdots 5`.

Mà `3^53 cancel vdots 5 => S cancel vdots 5.`

Vậy `S` không chia hết cho 15.

7 tháng 4

Để chứng minh rằng s = 3^1 + 3^2 + ... + 3^53 chia hết cho 15, ta sẽ chứng minh rằng tổng các số mũ của 3 từ 1 đến 53 chia hết cho 5 và chia hết cho 3.

Ta có:
3^1 ≡ 3 (mod 5)
3^2 ≡ 4 (mod 5)
3^3 ≡ 2 (mod 5)
3^4 ≡ 1 (mod 5)

Nhận thấy rằng sau mỗi 4 bước, dãy số mũ của 3 sẽ lặp lại theo chu kỳ 4. Vì vậy, ta chỉ cần xác định phần dư của 53 khi chia cho 4 để tìm số mũ tương ứng của 3.

53 ≡ 1 (mod 4)

Vậy 3^53 ≡ 3^1 ≡ 3 (mod 5)

Do đó, tổng s = 3^1 + 3^2 + ... + 3^53 chia hết cho 5.

Tiếp theo, ta cần chứng minh rằng tổng s chia hết cho 3. Ta biết rằng 3 chia hết cho 3, và 3^2 = 9 chia hết cho 3. Do đó, mọi số mũ của 3 lớn hơn 1 đều chia hết cho 3.

Vậy tổng s = 3^1 + 3^2 + ... + 3^53 chia hết cho cả 3 và 5, tức là chia hết cho 15.

1 tháng 3 2020

\(S=2+2^2+2^3+...+2^{100}\)

\(S=\left(2+2^2\right)+\left(2^3+2^4\right)+....+\left(2^{99}+2^{100}\right)\)

\(S=2\left(1+2\right)+2^3\left(1+2\right)+....+2^{99}\left(1+2\right)\)

\(S=2\cdot3+2^3\cdot3+....+2^{99}\cdot3\)

\(S=3\left(2+2^3+....+2^{99}\right)\)

\(\Rightarrow S⋮3\left(đpcm\right)\)

S có 100 lũy thừa cơ số 2, ta nhóm thành 50 cặp, mỗi cặp hai lũy thừa liền nhau

S = (2 + 2^2) + (2^3+ 2^4) + .......... + (2^99 + 2^100)

S = 2(1 +2) + 2^3(1 + 2) + ........... + 2^99(1+2)

S = 2.3 + 2^3.3 + .................. +2^99.3 (đặt thừa số chung)

các số hạng của S chia hết cho 3 => S chia hết cho 3

Tương tự cách trên nhưng bạn nhóm thành 25 cặp, mỗi cặp 4 lũy thừa cơ số 2 thì được kết quả chia hết cho 15

Sau khi đặt thừa số chung bạn thấy tổng này 1 + 2 + 2^2 + 2^3 = 15

=> S chia hết cho 15

S=2+22+23+...+2100

S=(2+22)+(23+24)+....+(299+2100)

S=6+22(23+24)+....+298(2+22)

S=1.6+22.6+...+298.6  

S=6.(1+22+....+296)    chia hết cho 3

S=2+22+23+...+2100

S=(2+22+23+24)+....+(297+298+299+2100)

S=30+.....+296(2+22+23+24)

S=1.30+....+296.30

S=30.(1+....+296)     chia hết cho 15

10 tháng 3 2020

a,2 + 2^2 + 2^3 + ... + 2^100

<=> (2+2^2) + (2^3+2^4) + .... + (2^99+2^100)

<=> 2.(1+2) + 2^3.(1+2) +.....+ 2^99.(1+2)

<=>2.3 + 2^3.3 +...+2699.3

<=>3.(2+2^3+....+2^99)

=> S chia hết cho 3

16 tháng 12 2020
. .
16 tháng 12 2020

as molie

Bài 1: 

a) Ta có: \(\left(2x-1\right)^{20}=\left(2x-1\right)^{18}\)

\(\Leftrightarrow\left(2x-1\right)^{20}-\left(2x-1\right)^{18}=0\)

\(\Leftrightarrow\left(2x-1\right)^{18}\left[\left(2x-1\right)^2-1\right]=0\)

\(\Leftrightarrow\left(2x-1\right)^{18}\cdot\left(2x-2\right)\cdot2x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)

b) Ta có: \(\left(2x-3\right)^2=9\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)

c) Ta có: \(\left(x-5\right)^2=\left(1-3x\right)^2\)

\(\Leftrightarrow\left(x-5\right)^2-\left(3x-1\right)^2=0\)

\(\Leftrightarrow\left(x-5-3x+1\right)\left(x-5+3x-1\right)=0\)

\(\Leftrightarrow\left(-2x-4\right)\left(4x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{2}\end{matrix}\right.\)

Bài 2: 

a) \(15^{20}-15^{19}=15^{19}\left(15-1\right)=15^{19}\cdot14⋮14\)

b) \(3^{20}+3^{21}+3^{22}=3^{20}\left(1+3+3^2\right)=3^{20}\cdot13⋮13\)

c) \(3+3^2+3^3+...+3^{2007}\)

\(=3\left(1+3+3^2\right)+...+3^{2005}\left(1+3+3^2\right)\)

\(=13\left(3+...+3^{2005}\right)⋮13\)

4 tháng 8 2023

a) \(4^{13}+4^{14}+4^{15}+4^{16}=4^{13}\left(1+4\right)+4^{14}\left(1+4\right)=4^{13}.5+4^{14}.5=5\left(4^{13}+4^{14}\right)⋮5\Rightarrow dpcm\)

c) \(2^{10}+2^{11}+2^{12}+2^{13}+2^{14}+2^{15}\)

\(=2^{10}\left(1+2+2^2\right)+2^{13}\left(1+2+2^2\right)\)

\(=2^{10}.7+2^{13}.7=7\left(2^{10}+2^{13}\right)⋮7\Rightarrow dpcm\)

Câu c bạn xem lại đê

18 tháng 12 2021

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\left(2+...+2^{19}\right)⋮7\)

22 tháng 2 2023

tự làm nha

 

18 tháng 12 2021

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\left(2+...+2^{19}\right)⋮7\)

17 tháng 12 2021

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\cdot\left(2+...+2^{19}\right)⋮7\)

9 tháng 8 2017

S=1+7+7^2+7^3+...+7^100+7^101

   =(1+7)+7^2(1+7)+...+7^100(1+7)

   =8+7^2.8+...+7^100.8

   =8.(1+7^2+...+7^100) chia hết cho 8 

Vậy S chia hết cho 8

     

9 tháng 8 2017

a.S=4+4^2+4^3+4^4+...+4^99+4^100 chia hết cho 5

   S=(4+4^2)+(4^3+4^4)+...+(4^99+4^100)

   S=20+4^2*20+...+4^98

   S=20*(1+4^2+...+4^98) chia hết cho 5(đpcm)

 b.S=2+2^2+2^3+2^4+...+2^2009+2^2010CHIA HẾT CHO 6

    S=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)

    S=6+2^2.*6+...+2^2008

    S=6*(1+2^2+...+2^2008)CHIA HẾT CHO 6

  

    

18 tháng 12 2021

gải giúp mình với