Cho a,b là các số tự nhiên khác 0 và thỏa:a+b chia hết cho 4.Chứng minh rằng:
a) a+5b chia hết cho 4
b)a-4b chia hết cho 4
c)3a-b chia hết cho 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
\(\overline{abc}=100a+10b+c\)
Vì $a,b$ là số chẵn nên $100a\vdots 4; 10b\vdots b$
Mà $\overline{abc}=100a+10b+c\vdots 4$
$\Rightarrow c\vdots 4$
(đpcm)
b.
$\overline{bac}=100b+10a+c$
$=100a+10b+c+(90b-90a)=\overline{abc}+90(b-a)$
Vì $b,a$ chẵn nên $b-a$ chẵn
$\Rightarrow 90(b-a)=45.2(b-a)\vdots 4$
Kết hợp với $\overline{abc}\vdots 4$
Do đó: $\overline{bac}=\overline{abc}+90(b-a)\vdots 4$
(đpcm)
2a+5b chia hết cho 7
=>6a+15b chia hết cho 7 (1)
ta có : nếu giả sử 3a+4b chia hết cho 7
=>6a+8b chia hết cho 7 (2)
Trừ (1) cho (2) ta được (6a+15b)-(6a+8b)=7b chia hết cho 7
Suy ra 3a+4b chia hết cho 7
Ta có:
( 9 a + 12 b ) - ( 2a + 5b ) = 7a + 7b = 7 (a + b ) chia hết cho 7
mà ( 2a + 5b ) chia hết cho 7
=> 9a + 12 b chia hết cho 7
=> 3 ( 3a + 4b ) chia hết cho 7
=> ( 3a + 4b ) chia hết cho 7
Bài làm:
a, Ta có: 98⋮7⇒98a⋮798⋮7⇒98a⋮7. Mà 100a+b⋮7⇒(100a+b)−98a⋮7⇒100a+b−98a⋮7100a+b⋮7⇒(100a+b)−98a⋮7⇒100a+b−98a⋮7
⇒2a+b⋮7⇒4.(2a+b)⋮7⇒8a+4b⋮7⇒2a+b⋮7⇒4.(2a+b)⋮7⇒8a+4b⋮7
Mặt khác 7a⋮7⇒8a+4b−7a⋮7⇒a+4b⋮77a⋮7⇒8a+4b−7a⋮7⇒a+4b⋮7 (đpcm)
Vậy...
b, Ta có: 3a+4b⋮11⇒4.(3a+4b)⋮11⇒12a+16b⋮113a+4b⋮11⇒4.(3a+4b)⋮11⇒12a+16b⋮11
Mà 11(a+b)⋮11⇒11a+11b⋮1111(a+b)⋮11⇒11a+11b⋮11
⇒(12a+16b)−(11a+11b)⋮11⇒12a+16b−11a−11b⋮11⇒(12a+16b)−(11a+11b)⋮11⇒12a+16b−11a−11b⋮11
⇒a+5b⋮11⇒a+5b⋮11 (đpcm)
Vậy...
a+5b=a+b+4b
vì a+b chia hết cho 4
4b chia hết cho 4
=>a+b+4b chia hết cho 4
hay a+5b chia hết cho 4
câu 2 sai đề
3a-b=4a-a-b=4a-(a+b)
vì 4a chia hết cho 4
a+b chia hết cho 4
nên 3a-b chia hết cho 4
nhớ tích cho mình với nha
a)Ta có: a+b chia hết cho 4
=>a+b+4b chia hết cho 4
=>a+5b chia hết cho 4
Ta có: \(3a+4b⋮11\Rightarrow4.\left(3a+4b\right)⋮11\Rightarrow12a+16b⋮11\)
\(\Rightarrow\left(a+5b\right)+\left(11a+11b\right)⋮11\)
\(\Rightarrow\left(a+5b\right)+11.\left(a+b\right)⋮11\)
\(\Rightarrow a+5b⋮11\)