Cho tam giác ABC vuông tại A , trên BC lấy M sao cho BM = AB . Qua M kẻ đường thẳng vuông góc với BC cắt AC tại I và cắt AB tại K .
a) tính góc ACB biết góc ABC = 55 Độ
b) chứng minh tam giác ABI bằng tam giác MBI.
c) chứng minh IK = IC
d) chứng minh IB + IK < CB + CK
a) ∆ABC vuông tại A (gt)
⇒ ∠ABC + ∠ACB = 90⁰
⇒ ∠ACB = 90⁰ - ∠ABC
= 90⁰ - 55⁰ = 35⁰
b) Xét hai tam giác vuông: ∆ABI và ∆MBI có:
AB = BM (gt)
BI là cạnh chung
⇒ ∆ABI = ∆MBI (cạnh huyền - cạnh góc vuông)
c) Do ∆ABI và ∆MBI (cmt)
⇒ AI = MI (hai cạnh tương ứng)
Xét hai tam giác vuông: ∆AIK và ∆MIC có:
AI = MI (cmt)
∠AIK = ∠MIC (đối đỉnh)
⇒ ∆AIK = ∆MIC (cạnh góc vuông - góc nhọn kề)
⇒ IK = IC (hai cạnh tương ứng)
d) ∆BIC có:
∠BIC = ∠BAI + ∠ABI (góc ngoài của ∆ABI)
= 90⁰ + ∠ABI > 90⁰
⇒ ∠BIC là góc tù
⇒ ∠BIC là góc lớn nhất
⇒ CB là cạnh lớn nhất (cạnh đối diện với góc lớn nhất)
⇒ IB < CB (1)
∆KIC có:
∠KIC = ∠KAI + ∠AKI (góc ngoài của ∆KIA)
= 90⁰ + ∠AKI > 90⁰
⇒ ∠KIC là góc tù
⇒ ∠KIC là góc lớn nhất
⇒ CK là cạnh lớn nhất (cạnh đối diện với góc lớn nhất)
⇒ IK < CK (2)
Từ (1) và (2) ⇒ IB + IK < CB + CK
làm giúp vs