K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2017

a )  

b) 

c) x^5 - x^4 - 1 

= x^5 - x^3 - x² - x^4 + x² + x + x^3 - x - 1 

= x²( x^3 - x - 1 ) - x( x^3 - x - 1 ) + ( x^3 - x - 1 ) 

= ( x² - x + 1)( x^3 - x - 1 )

d) 

17 tháng 7 2021

a) x12 + 4 = x12 + 4x6 + 4 - 4x6 = (x6 + 2)2 - (2x3)2 

= (x6 - 2x3 + 2)(x6 + 2x3 + 2)

b) 4x8 + 1 = 4x8 + 4x4  + 1 - 4x4 = (2x4 + 1)2 - (2x2)2 

= (2x4 + 2x2 + 1)(2x4 - 2x2  + 1)

17 tháng 7 2021

c) x7 + x5 - 1 = x7 - x + x5 + x2 - (x2 - x  + 1) = x(x6 - 1) + x2(x3 + 1) - (x2 - x + 1)

= x(x3 - 1)(x3 + 1) + x2(x + 1)(x2 - x + 1) - (x2 - x + 1)

= (x4 - x)(x + 1)(x2 - x + 1) + (x3 + x2)(x2 - x + 1) - (x2 - x + 1)

= (x5 + x4 - x2 - x + x3 + x2 - 1)(x2 -x + 1)

= (x5 + x4 + x3 - x - 1)(x2 - x + 1)

d) x+ x5 + 1 = x7 - x + x5 - x2 + (x2 + x + 1)

= x(x3 - 1)((x3 + 1) + x2(x3 - 1) + (x2 + x + 1)

= (x4 + x)(x  - 1)(x2 + x + 1) + x2(x - 1)((x+ x + 1) + (x2 + x + 1)

= (x2 + x + 1)(x5 - x4 + x- x + x3 - x2 + 1)

= (x2 + x + 1)(x5 - x4 + x3 - x + 1)

29 tháng 10 2018

\(x^8+x^7+1\)

\(=\left(x^8-x^6+x^5-x^3+x^2\right)+\left(x^7-x^5+x^4-x^2+x\right)+\left(x^6-x^4+x^3-x+1\right)\)

\(=x^2\left(x^6-x^4+x^3-x+1\right)+x\left(x^6-x^4+x^3-x+1\right)+\left(x^6-x^4+x^3-x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)

2 tháng 11 2018

\(x^5-x^4-1\)

\(=x^5-x^3-x^2-x^4+x^2+x+x^3-x-1\)

\(=x^2\left(x^3-x-1\right)-x\left(x^3-x-1\right)+\left(x^3-x-1\right)\)

\(=\left(x^2-x+1\right)\left(x^3-x-1\right)\)

19 tháng 11 2016

a, x8 + x7 + 1

=x2 (x6 - 1) + x (x6 - 1) +(x2 + x + 1)

= (x6 _ 1)(x2 + x) + (x2 + x +1)

= (x3 - 1)(x3 + 1)( x2 + x) + (x2 + x +1)

=(x - 1)(x2 + x +1)( x2 + x) + (x2 + x +1)

=(x2 + x +1)((x - 1)( x2 + x) +1)

=(x2 + x +1)(x3 + 1)

b, x5 - x4-1

c, x7+x5 + 1

d,x8 + x4 +1

Chú ý: Các đa thức có dạng: x3m+1+x3n+2+1 như x7+x2+1; x7+x5+1; x8 + x4 +1;

x5+x+1; x8+x+1 đều có nhân tử chung là x2 + x +1

Các phần còn lại tương tự nhé!!!

19 tháng 11 2016

cảm ơn ạ

17 tháng 8 2020

a) \(x^5-x^4-1\)

\(=\left(x^5+x^2\right)-\left(x^4+x\right)-\left(x^2-x+1\right)\)

\(=x^2\left(x^3+1\right)-x\left(x^3+1\right)-\left(x^2-x+1\right)\)

\(=x^2\left(x+1\right)\left(x^2-x+1\right)-x\left(x+1\right)\left(x^2-x+1\right)-\left(x^2-x+1\right)\)

\(=\left(x^2-x+1\right)\left(x^3+x^2-x^2-x-1\right)\)

\(=\left(x^2-x+1\right)\left(x^3-x-1\right)\)

17 tháng 8 2020

b) \(x^8+x^7+1\)

\(=\left(x^8-x^2\right)+\left(x^7-x\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x^6-1\right)+x\left(x^6-1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x^3-1\right)\left(x^3+1\right)+x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+x\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[\left(x^3-x^2\right)\left(x^3+1\right)+\left(x^2-x\right)\left(x^3+1\right)+1\right]\)

\(=\left(x^2+x+1\right)\left[\left(x^3-x\right)\left(x^3+1\right)+1\right]\)

\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)

16 tháng 8 2020

a/ \(x^4+16\)

\(=x^4+4x^2+16-4x^2\)

\(=\left(x^4+4x^2+16\right)-4x^2\)

\(=\left(x^2+4\right)^2-\left(2x\right)^2\)

\(=\left(x^2+4-2x\right)\left(x^2+4+2x\right)\)

b/ \(64x^4+y^4\)

\(=64x^4+y^4+16x^2y^2-16x^2y^2\)

\(=\left(64x^4+y^4+16x^2y^2\right)-16x^2y^2\)

\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)

\(=\left(y^2+8x^2-4xy\right)\left(8x^2+y^2-4xy\right)\)

27 tháng 10 2016

ủa phần a mình phân tích rồi mà bạn hu hu

 

16 tháng 5 2019

6 tháng 10 2019

\(x^8+x^7+1\)

\(=x^8+x^7+x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-xx+1\)

\(=\left(x^8-x^6+x^5-x^3+x^2\right)\)

\(+\left(x^7-x^5+x^4-x^2+x\right)\)

\(+\left(x^6-x^4+x^3-x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)

6 tháng 10 2019

\(x^5+x+1\)

\(=x^5-x^2+x^2+x+1\)

\(=x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)