Tìm x , y biết :
a) (x - 3)2 + (y + 2)2= 0 b) (x - 12+y )200 + ( x- 4 - y ) 200 =0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a)\(\begin{cases}\left(x-3\right)^2+\left(y+2\right)^2=0\\\begin{cases}\left(x-3\right)^2\ge0\\\left(y+2\right)^2\ge0\end{cases}\end{cases}\)
\(\Rightarrow\begin{cases}\left(x-3\right)^2=0\\\left(y+2\right)^2=0\end{cases}\)\(\Rightarrow\begin{cases}x=3\\y=-2\end{cases}\)
b) tương tự
b) (x-12+y)200+(x-4-y)200= 0
\(\begin{cases}\left(x-12+y\right)^{200}+\left(x-4-y\right)^{200}=0\\\begin{cases}\left(x-12+y\right)^{200}\ge0\\\left(x-4-y\right)^{200}\ge0\end{cases}\end{cases}\)
\(\Rightarrow\begin{cases}\left(x-12+y\right)^{200}=0\\\left(x-4-y\right)^{200}=0\end{cases}\)\(\Rightarrow\begin{cases}x-12+y=0\\x-4-y=0\end{cases}\)\(\Rightarrow\begin{cases}x+y=12\left(1\right)\\x-y=4\left(2\right)\end{cases}\)
Trừ theo vế của (1) và (2) ta được:
\(2y=8\Rightarrow y=4\)\(\Rightarrow\begin{cases}x+4=12\\x-4=4\end{cases}\)\(\Rightarrow x=8\)
Vậy x=8; y=4
a) 2x+2x.23=136
2x(1+23)=136
2x.9=136
2x=136:9 rồi tìm ra x nha
b) do mỗi phần tử của vế trái luôn lớn hơn hoặc bằng 0 nên mỗi phần tử đó sẽ bằng 0
từ đó tìm đc x,y nhé
a) Ta thấy:
\(\left(x-3\right)^2\ge0\)
\(\left(y+2\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+\left(y+2\right)^2\ge0\)
Để \(\left(x-3\right)^2+\left(y+2\right)^2=0\)
\(\Rightarrow\begin{cases}\left(x-3\right)^2=0\\\left(y+3\right)^2=0\end{cases}\)
\(\Rightarrow\begin{cases}x-3=0\\y+3=0\end{cases}\)
\(\Rightarrow\begin{cases}x=3\\y=-3\end{cases}\)
Vậy \(\begin{cases}x=3\\y=-3\end{cases}\)
c) Ta thấy:
\(\left(x-12+y\right)^{200}\ge0\)
\(\left(x-4-y\right)^{200}\ge0\)
\(\Rightarrow\left(x-12+y\right)^{200}+\left(x-4-y\right)^{200}\ge0\)
Để \(\left(x-12+y\right)^{200}+\left(x-4-y\right)^{200}=0\)
\(\Rightarrow\begin{cases}\left(x-12+y\right)^{200}=0\\\left(x-4-y\right)^{200}=0\end{cases}\)
\(\Rightarrow\begin{cases}x-12+y=0\\x-4-y=0\end{cases}\)
\(\Rightarrow\begin{cases}x+y=12\\x-y=4\end{cases}\)
\(\Rightarrow\begin{cases}x=\left(12+4\right):2\\y=\left(12-4\right):2\end{cases}\)
\(\Rightarrow\begin{cases}x=8\\y=4\end{cases}\)
Vậy \(\begin{cases}x=8\\y=4\end{cases}\)
\(\left(x-3\right)^2+\left(y+2\right)^2=0\)
\(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x-3\right)^2+\left(y+2\right)^2\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\Rightarrow x-3=0\Rightarrow x=3\\\left(y+2\right)^2=0\Rightarrow y+2=0\Rightarrow y=-2\end{matrix}\right.\)
đề sai câu b các câu sau áp dụng tương tự
c/ Vì: \(\left(x-12+y\right)^{200}+\left(x-4-x\right)^{200}=0\)
mà \(\left\{{}\begin{matrix}\left(x-12+y\right)^{200}\ge0\forall x,y\\\left(x-4-y\right)^{200}\ge0\forall x,y\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-12+y\right)^{200}=0\\\left(x-4-y\right)^{200}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-12+y=0\\x-4-y=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=12\\x-y=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\y=4\end{matrix}\right.\)
a) ko có a, b thỏa mãn
b) Giá trị lớn nhất của A = \(\frac{7}{6}\)
c) 16
d) x = \(\frac{14}{3}\)
e) x=-1
g) n= 7
h)
j) x=1
k) n=11