Phân tích đa thức thành nhân tử
a,x3+3x2+3x+1-27z3
b,(x+y+z)3-x3-y3-z3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =(x+y)^3+z^3-3xy(x+y)-3xyz
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)
b: \(=\left(x+y+y-z\right)^3-3\left(x+y\right)\left(y-z\right)\left(x+y+y-z\right)+\left(z-x\right)^3\)
\(=\left(x-z\right)^3+\left(z-x\right)^3-3\left(x+y\right)\left(y-z\right)\left(x-z\right)\)
\(=-3\left(x+y\right)\left(y-z\right)\left(x-z\right)\)
c: \(=\left(x^2+x\right)^2+3\left(x^2+x\right)+2-12\)
\(=\left(x^2+x\right)^2+3\left(x^2+x\right)-10\)
=(x^2+x+5)(x^2+x-2)
=(x^2+x+5)(x+2)(x-1)
d: =b^2c+bc^2+ac^2-a^2c-a^2b-ab^2
=b^2c-b^2a+bc^2-a^2b+ac^2-a^2c
=b^2(c-a)+b(c^2-a^2)+ac(c-a)
=(c-a)(b^2+ac)+b(c-a)(c+a)
=(c-a)(b^2+ac+bc+ba)
=(c-a)[b^2+bc+ac+ab]
=(c-a)[b(b+c)+a(b+c)]
=(c-a)(b+c)(b+a)
\(\left(x+y-z\right)^3-x^3-y^3+z^3\)
\(=\left[\left(x+y\right)-z\right]^3-x^3-y^3+z^3\)
\(=\left(x+y\right)^3-z^3-3\left(x+y\right)z\left(x+y-z\right)-x^3-y^3+z^3\)
\(=x^3+y^3-z^3+3xy\left(x+y\right)-3\left(x+y\right)z\left(x+y-z\right)-x^3-y^3+z^3\)
\(=3xy\left(x+y\right)-3z\left(x+y\right)\left(x+y-z\right)\)
\(=3\left(x+y\right)\left[xy-z\left(x+y-z\right)\right]\)
\(=3\left(x+y\right)\left(xy-zx-yz+z^2\right)\)
\(=3\left(x+y\right)\left[x\left(y-z\right)-z\left(y-z\right)\right]\)
\(=3\left(x+y\right)\left(y-z\right)\left(x-z\right)\)
#\(Urushi\text{☕}\)
Áp dụng (a+b)3 = a3+b3+3ab(a+b), ta có:
(x+y+z)3-x3-y3-z3
=[(x+y)+z]3-x3-y3-z3
=(x+y)3+z3+3z(x+y)(x+y+z)-x3-y3-z3
=x3+y3+3xy(x+y)+z3+3z(x+y)(x+y+z)-x3-y3-z3
=3(x+y)(xy+xz+yz+z2)
=3(x+y)[x(y+z)+z(y+z)]
=3(x+y)(y+z)(x+z)
`(x+y)^3-x^3-y^3`
`=(x+y)^3-(x^3+y^3)`
`=(x+y)^3-(x+y)(x^2-xy+y^2)`
`=(x+y)[(x+y)^2-x^2+xy-y^2]`
`=(x+y)(x^2+2xy+y^2-x^2+xy-y^2)`
`=(x+y).3xy`
a) Ta có: \(\left(x+y\right)^3-x^3-y^3\)
\(=x^3-x^3+y^3-y^3+3x^2y+3xy^2\)
\(=3xy\left(x+y\right)\)
Ta có: ( x - y) z3 + ( y - z ) x3 + ( z - x ) y3
= ( x - y ) z3 + ( y - z )x3 + ( z - y)y3 + ( y - x ) y3
= ( x - y ) ( z3 - y3 ) + ( y - z ) ( x3 - y3)
= ( x - y ) ( z - y ) ( z2 + zy + y2 ) + ( y - z ) ( x - y) ( x2 + xy + y2 )
= ( x - y ) ( y - z ) ( x2 + xy + y2 - z2 - zy - y2)
= ( x - y ) ( y - z ) [ ( x2 - z2) + ( xy - zy) ]
= ( x - y ) ( y - z ) [ ( x - z ) ( x + z ) + y ( x - z ) ]
= ( x - y ) ( y - z ) ( x - z ) ( x + y + z )
(x - y).z3 + (y - z).x3 + (z - x).y3
= z3(x - y) + x3y - x3z + y3z - xy3
= z3(x - y) + xy(x2 - y2) - z(x3 - y3)
= z3(x - y) + xy(x - y)(x + y) - z(x - y)(x2 + xy + y2)
= (x - y)(z3 + x2y + xy2 - x2z - xyz - y2z)
= (x - y)[z(z2 - x2) + xy(x - z) + y2(x - z)]
= (x - y)[z(z - x)(z + x) - xy(z- x) - y2(z - x)]
= (x - y)(z - x)(z2 + xz - xy - y2)
= (x - y)(z - x)[(y - z)(y + z) - x(y - z)]
= (x - y)(z - x)(y - z)(y + z - x)
a) x⁴ + 2x² + 1
= (x²)² + 2.x².1 + 1²
= (x² + 1)²
b) 4x² - 12xy + 9y²
= (2x)² - 2.2x.3y + (3y)²
= (2x - 3y)²
c) -x² - 2xy - y²
= -(x² + 2xy + y²)
= -(x + y)²
d) (x + y)² - 2(x + y) + 1
= (x + y)² - 2.(x + y).1 + 1²
= (x - y + 1)²
e) x³ - 3x² + 3x - 1
= x³ - 3.x².1 + 3.x.1² - 1³
= (x - 1)³
g) x³ + 6x² + 12x + 8
= x³ + 3.x².2 + 3.x.2² + 2³
= (x + 2)³
h) x³ + 1 - x² - x
= (x³ + 1) - (x² + x)
= (x + 1)(x² - x + 1) - x(x + 1)
= (x + 1)(x² - x + 1 - x)
= (x + 1)(x² - 2x + 1)
= (x + 1)(x - 1)²
k) (x + y)³ - x³ - y³
= (x + y)³ - (x³ + y³)
= (x + y)³ - (x + y)(x² - xy + y²)
= (x + y)[(x + y)² - x² + xy - y²]
= (x + y)(x² + 2xy + y² - x² + xy - y²)
= (x + y).3xy
= 3xy(x + y)
a.
\(x^3-y^3+2x^2-2y^2\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)+\left(x-y\right)\left(2x+2y\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2+2x+2y\right)\)
b.
\(x^3+1-x^2-x\)
\(=\left(x+1\right)\left(x^2-x+1\right)-x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-2x+1\right)\)
\(=\left(x+1\right)\left(x-1\right)^2\)
Bạn phải vt thêm dấu mũ vào mới giải đc chứ!! Để thế kia ai mà giải đc
a, x^4 - 5x^2 + 4
= x^4 - 4x^2- x+ 4
= x^2 . (x^2 - 4) - (x^2 - 4)
= (x^2 - 4) . (x^2 - 1)
= (x - 2) . (x + 2) . (x - 1) . (x + 1)
\(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left(x+y\right)^3+3\left(x+y\right)z\left(x+y+z\right)+z^3-x^3-y^3-z^3\)
\(=x^3+y^3+z^3+3xy\left(x+y\right)+3\left(x+y\right)z\left(x+y+z\right)-x^3-y^3-z^3\)
\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)
\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)