K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2017

      B = (x-2)(x-5)(x2-7x-10)

    =(x2-7x+10)(x2-7x-10)

    =(x2-7x)2-102

     =(x2-7x)2-100

=>GTNN của B là 100 <=>x2-7x=0

             x(x-7)=0

        =>x=0 hoặc x=7

Vậy GTNN của B là 100 khi x=0 hoặc x=7

     

    

17 tháng 10 2018

A=x^2+2x.3/2+3/2^2+11/2

=(x+3/2)^2+11/2>=11/2

26 tháng 1 2017

NHANH MINH K

26 tháng 1 2017

B = 5 - 2z2

Vì 2z2 ≥ 0 => B = 5 - 2z2 ≤ 5

Dấu "=" xảy ra khi 2z2 = 0 => z = 0

Vậy Bmax là 5 tại z = 0

C = |x - 3| + |5 - x| ≥ |x - 3 + 5 - x| = 2 

Dấu "=" xảy ra khi (x - 3)(5 - x) ≥ 0 <=> 5 ≥ x ≥ 3

Vậy Cmin = 2 tại 5 ≥ x ≥ 3

28 tháng 2 2016

b, P = 2016 tại x = 2 và y = 0

28 tháng 2 2016

cach lam nhu the nao 

14 tháng 6 2019

\(P=\frac{1}{5xy}+\frac{xy}{20}+\frac{5}{x+2y+5}+\frac{x+2y+5}{20}-\frac{xy}{20}-\frac{x+2y+5}{20}\)

\(\ge2\sqrt{\frac{1}{5xy}.\frac{xy}{20}}+2.\sqrt{\frac{5}{x+2y+5}.\frac{x+2y+5}{20}}-\frac{x\left(3-x\right)+x+2\left(3-x\right)+5}{20}\)

\(=2.\frac{1}{10}+2.\frac{1}{2}-\frac{-x^2+2x+11}{20}\)

\(=\frac{x^2-2x+1}{20}+\frac{3}{5}=\frac{\left(x-1\right)^2}{20}+\frac{3}{5}\ge\frac{3}{5}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{1}{5xy}=\frac{xy}{20}\\\frac{5}{x+2y+5}=\frac{x+2y+5}{20}\\\left(x-1\right)^2=0,x+y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}xy=2\\x+2y+5=10\\x=1,x+y=3\end{cases}\Leftrightarrow}x=1,y=2\)

Vậy min P=3/5 khi x=1, y=2

14 tháng 6 2019

Em co cach nay ngan gon hon, cac ban co the tham khao 

P=\(\frac{1}{5xy}\) + \(\frac{5}{x+2y+5}\)=\(\frac{1}{5xy}\)+\(\frac{25}{5\left(x+2y+5\right)}\)

                                                   = \(\frac{1^2}{5xy}\)+\(\frac{5^2}{5\left(x+2y+5\right)}\)

                                                    \(\geq\) \(\frac{\left(1+5\right)^{^2}}{5xy+5\left(x+2y+5\right)}\)

                                                     =\(\frac{36}{5\left(xy+x+2y+2+3\right)}\)

                                                     =\(\frac{36}{5\left(\left(x+2\right)\left(y+1\right)+3\right)}\)

                                                      =\(\frac{36}{5\left(\frac{\left(x+y+3\right)^2}{4}+3\right)}\) (do \((x+2)(y+1) \leq \frac {(x+y+3)^2}{4}\) )

                                                      =\(\frac{36}{5\left(\frac{\left(3+3\right)^2}{4}+3\right)}\) (do \(x+y \leq 3\) )

                                                      =\(\frac{3}{5}\) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\frac{1}{5xy}=\frac{1}{x+2y+5}\\x+2=y+1\\x+y=3\end{cases}}\Leftrightarrow x=2,y=1\) 

Vậy GTNN của P là 3/5 khi và chỉ khi x=2,y=1

Bài 1:

a: \(M=x^2+4x+4+5=\left(x+2\right)^2+5>=5\)

Dấu '=' xảy ra khi x=-2

b: \(N=x^2-20x+101=x^2-20x+100+1=\left(x-10\right)^2+1>=1\)

Dấu '=' xảy ra khi x=10