K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2021

cần gấp bài 1 và bài 3, bài 2 k có cx đc 

 

20 tháng 7 2016

a.

165 + 215 = (24)5 + 215 = 220 + 215 = 215 x (25 + 1) = 215 x (32 + 1) = 215 x 33

Vậy 1615 + 215 chia hết cho 33

b.

817 - 279 - 913 = (34)7 - (33)9 - (32)13 = 328 - 327 - 326 = 322 x (36 - 35 - 34) = 322 x 405

Vậy  817 - 279 - 913 chia hết cho 405

 

20 tháng 7 2016

câu c)  hơi bị khó

25 tháng 10 2019

\(81^7-27^9-9^{13}\)

\(=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)

\(=3^{28}-3^{27}-3^{26}\)

\(=3^{26}\left(3^2-3^1-1\right)\)

\(=3^{26}.5\)

\(=3^{24}.3^2.5\)

\(=3^{24}.45\)chia hết cho 45

20 tháng 9 2015

Nguyễn Ngọc Quý sai ...= 7^6. ( 7-1+49)= 7^6.55 chia hết cho 11

20 tháng 9 2015

nhìu thế giảm tải dc ko                  

10 tháng 11 2023

7^6-7^5+7^9=7^5nhân(7-1+7^4)=7^5nhân 55=vì 55 chia hết cho 11,nên7^6-7^5+7^9 chia hết cho11

AH
Akai Haruma
Giáo viên
26 tháng 9 2017

Lời giải:

1)

Ta có : \(A=81^7-27^9-9^{13}=(3^4)^7-(3^3)^9-(3^2)^{13}\)

\(\Leftrightarrow A=3^{28}-3^{27}-3^{26}=3^{26}(3^2-3-1)\)

\(\Leftrightarrow A=5.3^{26}=405.3^{22}\)

Do đó \(A\vdots 405\) (đpcm)

2)

Ta thấy : \(12^{2}\equiv 11\pmod {133}\)

\(\Rightarrow 12^{2n+1}\equiv 11^{n}.12\pmod {133}\)

\(\Rightarrow 12^{2n+1}+11^{n+2}\equiv 11^n.12+11^{n+2}\pmod {133}\)

\(\Leftrightarrow 12^{2n+1}+11^{n+2}\equiv 11^n(12+11^2)\equiv 11^n.133\equiv 0\pmod {133}\)

Do đó: \(12^{2n+1}+11^{n+2}\vdots 133\) (đpcm)

3)

Ta thấy \(A=5x+2y;B=9x+7y\Rightarrow 3A+4B=51x+34y\)

Vì \(51\vdots 17;34\vdots 17\Rightarrow 3A+4B\vdots 17\)

Nếu \(A\vdots 17\Rightarrow 4B\vdots 17\). Mà $(4,17)$ nguyên tố cùng nhau nên \(B\vdots 17\)

Do đó ta có đpcm.

28 tháng 9 2018

câu 1 số 5 là sao vậy bạn và đpcm là gì vậy

23 tháng 12 2021

1223344567890654564255