K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

phải là 5(2x2y+2x+2xy2+y)-49=49x chứ

20 tháng 3 2018

\(|x^2-2xy+y^2+3x-2y-1|+4=2x-|x^2-3x+2|\)

\(\Leftrightarrow2x-4=|x^2-2xy+y^2+3x-2y-1|+|x^2-3x+2|\ge0\)

\(\Leftrightarrow x\ge2\)

Với \(x\ge2\)thì ta suy ra được

\(\hept{\begin{cases}x^2-2xy+y^2+3x-2y-1=\left(x-y+1\right)^2+x-2\ge0\\x^2-3x+2=\left(x-2\right)^2+x-2\ge0\end{cases}}\)

Từ đây ta bỏ dấu giá trị tuyệt đối thì ta có:

\(x^2-2xy+y^2+3x-2y-1+4=2x-\left(x^2-3x+2\right)\)

\(\Leftrightarrow2x^2+y^2-2xy-2x-2y+5=0\)

\(\Leftrightarrow\left(x-y+1\right)^2+\left(x-2\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)

x 2 − 2xy + y 2 + 3x − 2y − 1| + 4 = 2x − |x 2 − 3x + 2| ⇔2x − 4 = |x 2 − 2xy + y 2 + 3x − 2y − 1| + |x 2 − 3x + 2| ≥ 0 ⇔x ≥ 2 Với x ≥ 2thì ta suy ra được x 2 − 2xy + y 2 + 3x − 2y − 1 = x − y + 1 2 + x − 2 ≥ 0 x 2 − 3x + 2 = x − 2 2 + x − 2 ≥ 0 Từ đây ta bỏ dấu giá trị tuyệt đối thì ta có: x 2 − 2xy + y 2 + 3x − 2y − 1 + 4 = 2x − x 2 − 3x + 2 ⇔2x 2 + y 2 − 2xy − 2x − 2y + 5 = 0 ⇔ x − y + 1 2 + x − 2 2 = 0 ⇔ x = 2 y = 3 

8 tháng 9 2015

2x² + 2y² + 2xy -2x + 2y + 2 = 0

<=>x2+2xy+y2+x2-2x+1+y2+2y+1=0

<=>(x+y)2+(x-1)2+(y+1)2=0

<=>x-1=0 và y-1=0

<=>x=1 và y=-1

 

25 tháng 2 2019

Đề lỗi rồi kìa ba: \(+^2+\) là sao?

28 tháng 2 2019

Khó ghê,giải giúp anh với :v

9 tháng 3 2023

Là có giải ko mẹ🥰🙏

NV
12 tháng 12 2020

Đề bài chắc sai bạn:

\(2x^2+y^2+1=2xy\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+x^2+1=0\)

\(\Leftrightarrow\left(x-y\right)^2+x^2+1=0\) (vô lý)

Hệ vô nghiệm

9 tháng 5 2020

\(\hept{\begin{cases}2x^2+3xy-2y^2-5\left(2x-y\right)=0\left(1\right)\\x^2-2xy-3y^2+15=0\left(2\right)\end{cases}\left(I\right)}\)

Ta có \(\left(1\right)\Leftrightarrow\left(2x-y\right)\left(x+2y\right)-5\left(2x-y\right)=0\)

\(\Leftrightarrow\left(2x-y\right)\left(x+2y-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=2x\\x=5-2y\end{cases}}\)

Do đó \(\left(I\right)\Leftrightarrow\hept{\begin{cases}y=2x\\x^2-2x\cdot2x-3\left(2x\right)^2+15=0\end{cases}\left(II\right)}\)hoặc \(\hept{\begin{cases}x=5-2y\\\left(5-2y\right)^2-2\left(5-2y\right)y-3y^2+15=0\end{cases}\left(III\right)}\)

\(\left(II\right)\Leftrightarrow\hept{\begin{cases}y=2x\\-15x^2+15=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1;y=2\\x=-1;y=-2\end{cases}}}\)

\(\left(III\right)\Leftrightarrow\hept{\begin{cases}x=5-2y\\5y^2-30y+40=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=2;x=1\\y=4;x=-3\end{cases}}}\)

Vậy hệ phương trình (I) đã cho có nghiệm (x;y)=(1;2);(-1;-2);(-3;4)