tìm tất cả các số nguyên tố P để \(4P^2+1\)và \(6P^2+1\)đều là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xem lại đề đi bn ơi, t nghĩ phải là tìm số nguyên tố p chứ ?
Lời giải:
Nếu $p$ chia hết cho $5$ thì $p=5$. Khi đó $4p^2+1=4.5^2+1=101$ là snt và $6p^2+1=6.5^2+1=151$ là snt (thỏa mãn)
Nếu $p$ không chia hết cho 5. Khi đó $p^2$ chia $5$ dư $1$ hoặc $4$.
+ Nếu $p^2$ chia $5$ dư $1$
$\Rightarrow 4p^2$ chia $5$ dư $4$. Khi đó $4p^2+1$ chia hết cho $5$. Mà $4p^2+1>5$ nên không là snt (trái với giả thiết)
+ Nếu $p^2$ chia $5$ dư $4$
$\Rightarrow 6p^2$ chia $5$ dư $24$, hay dư $4$
$\Rightarrow 6p^2+1$ chia hết cho $5$. Mà $6p^2+1>5$ nên không là snt (trái với đề)
Vậy $p=5$ là kết quả duy nhất thỏa mãn.
a) Gọi p là số nguyên tố cần tìm.
Nếu p chia hết cho 3 và p là số nguyên tố nên p = 3.
Ta có \(2p^2+1=19\).
Vậy p = 3 (thỏa mãn).
Nếu p chia cho 3 dư 1, ta có p = 3k + 1. ( k là một số tự nhiên).
\(2p^2+1=2.\left(3k+1\right)^2+1=2\left(9k^2+6k+1\right)+1=18k^2+12k+3\)\(=3\left(6k^2+4k+1\right)\) chia hết cho 3.
Nếu p chia cho 3 dư 2, ta có p = 3k + 2, (k là một số tự nhiên).
\(2p^2+1=2\left(3k+2\right)^2+1=2\left(9k^2+12k+4\right)+1\)\(=18k^2+24k+9=3\left(6k^2+8k+3\right)\) chia hết cho 3.
vậy p = 3 là giá trị cần tìm.
b) Dễ thấy p = 2 không phải là giá trị cần tìm.
vậy p là một số nguyên tố lẻ suy ra p có tận cùng là 1, 3, 5, 7.
nếu p có tận cùng là 1 thì \(p^2\) cũng có tận cùng là 1. Suy ra \(4p^2+1\) có tận cùng là 5. (loại)
nếu p có tận cùng là 3 thì \(p^2\) có tận cùng là 9. Suy ra \(6p^2+1\) có tận cùng là 5. (loại)
nếu p có tận cùng là 5 thì p phải bằng 5. Thay vào ta thấy của \(4p^2+1\) và \(6p^2+1\) đều là các số nguyên tố.
nếu p có tận cùng là 7 thì \(p^2\) có tận cùng bằng 9. Suy ra \(6p^2+1\) có tận cùng là 5. (loại)
nếu p có tận cùng là 9 thì \(p^2\) có tận cùng bằng 1. Suy ra \(4p^2+1\) có tận cùng là 5. (loại)
vậy p = 5 là giá trị cần tìm.
b)
p = 2 thì 4p2 + 1 = 25 không là SNT.(số nguyên tố)
* p = 3 thì 6p2 + 1 = 55 không là SNT
* p = 5 thì 4p2 + 1=101 và 6p2 + 1 = 151 là SNT vậy p = 5 thỏa điều kiện đề bài.
* P > 5 => p = 5k ±1, hoặc p = 5k ± 2.
khi: p = 5k ± 1thì
4p2 + 1 = 4(25k2 ± 10k + 1) + 1= 4.25k2 ± 4.10k + 5 > 5 và chia hết cho 5
khi p = 5k ± 2 thì:
6k2 + 1 =6(25k2 ± 10k + 4) + 1 = 6.25k2 ± 6.10k + 25 > 5 và chia hết cho 5
vậy khi p>5 thì 4p2+1 và 6p2+1 không đồng thời là SNT.
=> p = 5 là SNT cần tìm.
Tìm số nguyên tố p để 4p^2+1 và 6p^2+1 cũng là số nguyên tố? | Yahoo Hỏi & Đáp
Bạn tham khảo
xét p=2 , 5 thỏa mãn .
xét p=3 ko thỏa mãn
xét p>5 => ko thỏa mãn 4p^2+1 và 6p^2 +1 là snt