Tìm x biết -2/3.(x-1/4)=1/3 .(2x+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{x}{3}=\dfrac{4}{12}\Rightarrow x=\dfrac{4}{12}\cdot3=\dfrac{12}{12}=1\)
b) \(\dfrac{x-1}{x-2}=\dfrac{3}{5}\) (Điều kiện : \(x\ne2\))
\(\Rightarrow5\left(x-1\right)=3\left(x-2\right)\)
\(\Leftrightarrow5x-5=3x-6\Leftrightarrow5x-3x=-6+5\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)
c) \(2x:6=\dfrac{1}{4}\Leftrightarrow2x=\dfrac{1}{4}\cdot6=\dfrac{6}{4}=\dfrac{3}{2}\Leftrightarrow x=\dfrac{3}{2}:2=\dfrac{3}{2}\cdot\dfrac{1}{2}=\dfrac{3}{4}\)
d) \(\dfrac{x^2+x}{2x^2+1}=\dfrac{1}{2}\)
\(\Rightarrow2\left(x^2+x\right)=2x^2+1\)
\(\Leftrightarrow2x^2+2x=2x^2+1\)
\(\Leftrightarrow2x^2+2x-2x^2=1\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\).
\(a,\Leftrightarrow x^3-8-x\left(x^2-9\right)=1\\ \Leftrightarrow x^3-8-x^3+9x=1\\ \Leftrightarrow9x=9\Leftrightarrow x=1\\ b,\Leftrightarrow8x^3+12x^2+6x+1-8x^3 +12x^2-6x+1-24x^2+24x-1=0\Leftrightarrow1=0\Leftrightarrow x\in\varnothing\)
a) \(\Leftrightarrow x^3-8-x^3+9x=1\)
\(\Leftrightarrow9x=9\Leftrightarrow x=1\)
b) \(\Leftrightarrow8x^3+12x^2+6x+1-8x^3+12x^2-6x+1-24x^2+24x-6=5\)
\(\Leftrightarrow24x=9\Leftrightarrow x=\dfrac{3}{8}\)
1: =>x^2+4x-21=0
=>(x+7)(x-3)=0
=>x=3 hoặc x=-7
2: =>(2x-5-4)(2x-5+4)=0
=>(2x-9)(2x-1)=0
=>x=9/2 hoặc x=1/2
3: =>x^3-9x^2+27x-27-x^3+27+9(x^2+2x+1)=15
=>-9x^2+27x+9x^2+18x+9=15
=>18x=15-9-27=-21
=>x=-7/6
6: =>4x^2+4x+1-4x^2-16x-16=9
=>-12x-15=9
=>-12x=24
=>x=-2
7: =>x^2+6x+9-x^2-4x+32=1
=>2x+41=1
=>2x=-40
=>x=-20
\(\left(x-1\right)^3+3\left(x+1\right)^2=\left(x+2\right)\left(x^2-2x+4\right)\)
\(\Leftrightarrow x^3-3x^2+3x-1+3x^2+6x+1=x^3+8\)
\(\Leftrightarrow x^3+9x=x^3+8\)
hay \(x=\dfrac{8}{9}\)
\(-2x-\frac{3}{4}=x-\frac{3}{5}\)
\(3x=\frac{3}{5}-\frac{3}{4}=-\frac{3}{20}\)
\(x=-\frac{1}{20}\)
b) \(\left|\frac{x}{2}-\frac{1}{3}\right|=\frac{1}{4}+\frac{3}{2}=\frac{7}{4}\)
=> \(\orbr{\begin{cases}\frac{x}{2}-\frac{1}{3}=\frac{7}{4}\\\frac{x}{2}-\frac{1}{3}=-\frac{7}{4}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{25}{6}\\x=-\frac{17}{6}\end{cases}}}\)
a, \(-2x-\frac{3}{4}=x-\frac{3}{5}\)
\(-2x-\frac{3}{4}-x+\frac{3}{5}=0\)
\(-3x-\frac{3}{20}=0\)
\(\frac{3}{20}=-3x\Leftrightarrow x=\frac{1}{20}\)
\(-\dfrac{2}{3}\left(x-\dfrac{1}{4}\right)=\dfrac{1}{3}\left(2x+1\right)\)
=>\(-\dfrac{2}{3}\cdot x+\dfrac{2}{3}\cdot\dfrac{1}{4}=\dfrac{1}{3}\cdot2x+\dfrac{1}{3}\)
=>\(-\dfrac{2}{3}x+\dfrac{2}{12}=\dfrac{2}{3}x+\dfrac{1}{3}\)
=>\(-\dfrac{4}{3}x=\dfrac{1}{3}-\dfrac{2}{12}=\dfrac{1}{6}\)
=>\(x=-\dfrac{1}{6}:\dfrac{4}{3}=-\dfrac{1}{6}\cdot\dfrac{3}{4}=\dfrac{-1}{8}\)