TÌM GIÁ TRỊ LỚN NHẤT CỦA BIỂU THỨC A=8x-2/x^2+3
Giúp mik với mk cần gấp ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=5-8x-x^2\\ =-\left[x^2+2.x.4+16\right]+21\\ =-\left(x+4\right)^2+21\le21\forall x\in R\\ \Rightarrow max_D=21.khi.x=-4\)
\(E=4x-x^2+1\\ =-\left(x^2-2.x.2+4^2\right)+17\\ =-\left(x-2\right)^2+17\le17\forall x\in R\\ Vậy:max_E=17.khi.\left(x-2\right)=0\Leftrightarrow x=2\)
a, Ta có: \(A=\left|x+2\right|+\left|9-x\right|\ge\left|X+2+9-x\right|=11\)
Dấu "=' xảy ra khi \(\left(x+2\right)\left(9-x\right)\ge0\Leftrightarrow-2\le x\le9\)
Vậy MinA = 11 khi -2 =< x =< 9
b, Vì \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow B=\frac{3}{4}-\left(x-1\right)^2\le\frac{3}{4}\)
Dấu "=" xảy ra khi x = 1
Vậy MaxB = 3/4 khi x=1
Ta có :\(A=\left|x+2\right|+\left|9-x\right|\ge\left|x+2+9-x\right|=11\)
Vậy \(A_{min}=11\) khi \(2\le x\le9\)
\(A=\frac{3x^2+8x+6}{x^2+2x+1}\) \(\left(x\ne\pm1\right)\)
\(A=\frac{\left(3x^2+6x+3\right)+\left(2x+3\right)}{\left(x+1\right)^2}\)
\(A=\frac{3\left(x+1\right)^2+2x+3}{\left(x+1\right)^2}\)
\(A=3+\frac{2x+3}{\left(x+1\right)^2}\)
Vì\(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow3+\frac{2x+3}{\left(x+1\right)^2}\ge3\Leftrightarrow A\ge3\)
Dấu "="xảy ra khi \(2x+3=0\Rightarrow x=\frac{-3}{2}\)
Gọi k là một giá trị của A ta có:
\(\frac{\left(3x^2-8x+6\right)}{\left(x^2+2x+1\right)}=k\)
\(\Leftrightarrow3x^2-8x+6=k\left(x^2-2x+1\right)\)
\(\Leftrightarrow\left(3-k\right)x^2-\left(8-2k\right)x+6-k=0\)(*)
Ta cần tìm k để PT (*) có nghiệm
Xét: \(\Delta=\left(8-2k\right)^2-4\left(3-k\right)\left(6-k\right)=64-32k+4k^2-4\left(18-9k+k^2\right)=4k-8\)
Để PT (*) có nghiệm thì: \(\Delta\ge0\Leftrightarrow4k-8\ge0\Leftrightarrow k\ge2\)
Dấu "=" xảy ra khi: \(-\left(8-2.2\right)x+6-2=0\Leftrightarrow-4x+4=0\Rightarrow x=1\)
Vậy: \(B\ge2\)suy ra: B = 2 khi x = 1
Bài 2:
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
Bài 1:
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1\(\ge\)0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967\(\ge\)0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2\(\le\)0+21=21
Dấu = khi x+4=0 <=>x=-4
b)đề sai à
ài 1:
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1$\ge$≥0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967$\ge$≥0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2$\le$≤0+21=21
Dấu = khi x+4=0 <=>x=-4
b)đề sai à
a) Nhận xét :
/ x + 8 / > 0 với mọi x
/ y - 3 / > 0 với mọi y
=> / x + 8 / + / y - 3 / > 0
=> / x + 8 / + / y - 3 / + 2018 > 2018
=> M > 2018
=> Giá trị nhỏ nhất của M = 2018
Dấu " = " xảy ra khi :
/ x + 8 / = 0
và / y - 3 / = 0
=> x + 8 = 0
và y - 3 = .0
=> x = - 8
Và y = 3
Vậy giá trị nhỏ nhất của M là 2018 khi x = - 8 và y = 3
b) Nhận xét :
/ x + 2 / > 0 với mọi x
/ y - 1 / > 0 với mọi y
=> / x + 2 / + / y - 1 / > 0
=> - / x + 2 / - / y - 1 / < 0
=> - / x + 2 / - / y - 1 / + 1999 < 1999
=> N < 1999
=> Giá trị lớn nhất của N = 1999
Dấu " = " xảy ra khi :
/ x + 2 / = 0
và / y - 1 / = 0
=> x + 2 = 0
và y - 1 = 0
=> x = - 2
và y = 1
Vậy giá trị lớn nhất của N là 1999 khi x = - 2 và y = 1
\(A=-\left|x-7\right|+2\le2\\ A_{max}=2\Leftrightarrow x-7=0\Leftrightarrow x=7\\ B=-5-\left|2x+3\right|\le-5\\ A_{max}=-5\Leftrightarrow2x+3=0\Leftrightarrow x=-\dfrac{3}{2}\)
Lời giải:
$A=\frac{8x-2}{x^2+3}$
$\Rightarrow A(x^2+3)=8x-2$
$\Leftrightarrow Ax^2-8x+(3A+2)=0(*)$
Xét $A\neq 0$. Vì $A$ tồn tại nên PT $(*)$ tồn tại, nghĩa là $(*)$ có nghiệm
$\Leftrightarrow \Delta'=16-A(3A+2)\geq 0$
$\Leftrightarrow 3A^2+2A-16\leq 0$
$\Leftrightarrow (A-2)(3A+8)\leq 0$
$\Leftrightarrow \frac{-8}{3}\leq A\leq 2$
Vậy $A_{\max}=2$