Cho a + b + c = 0 . Chứng minh rằng : a^3 + b^3 + a^2.c + b^2.c - abc = 0
Các bạn giải hộ mình với
Mk sẽ tick cho người nào nhanh nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải :
a2 + b2 + c2 = ab + ac + bc
\(\Rightarrow\)2a2 + 2b2 + 2c2 = 2ab + 2ac + 2bc
\(\Rightarrow\)2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0
\(\Rightarrow\)( a2 - 2ab + b2 ) + ( a2 - 2ac + c2 ) + ( b2 - 2bc + c2 ) = 0
\(\Rightarrow\)( a - b )2 + ( a - c )2 + ( b - c )2 = 0
Vì ( a - b )2 \(\ge\)0 với mọi a , b ; ( a - c )2 \(\ge\)với mọi a , c ; ( b - c )2 \(\ge\)0 với mọi b , c
Do đó ( a - b )2 + ( a - c )2 + ( b - c )2 = 0 khi a - b = a - c = b - c = 0
\(\Rightarrow\)a = b = c
ta có \(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\)
tương tự ta có
\(b^2+c^2\ge2bc;c^2+a^2\ge2ac\)
cộng từng vế của 3 bđt cùng chiều ta có
\(a^2+b^2+c^2\ge ab+bc+ca\)
dấu = xảy ra <=> a=b=c(ĐPCM)
Ta có :
\(a^3b^3+2+b^3c^3+3a^3c^3\)
= \(a^3b^3-b^3c^3+3b^3c^3+3a^3c^3\)
= \(b^3(a^3-c^3)+3c^3(b^3+a^3)\)
= \(b^3(-b^3-2c^3)+3c^3(-c^3)\)
Vậy : \(b^6-2b^3c^3-3c^6\le0\)
Đúng nhá bạn.Chúc bạn học tốt
Áp dụng công thức tỉ lệ phân số ta có :
\(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{ac}{bd}\)
THÔI TỰ ĐI MÀ LÀM NHÌN THẤY LÀ ĐÃ GIẬT MÌNH RỒI DÀI DẰNG DẶC AI MÀ LÀM HẾT ĐƯỢC CÁC BẠN NHỈ !
1 /
B = 15 + 17 - 16
B = 16
mà 16 không chia hết cho 12 , nên không cần chứng minh cũng ra
2 /
a ) N = 1 đó
b ) N = 1 đó
cách dễ nhất là cứ cho N = 1 , vì bao nhiêu lần 1 thực hiện phép tính chia thì chắng chia hết cho 1
còn lại tương tự nhé !
mình còn làm violympic nữa
nhầm làm lại nha ^^
(a+b+c)^2=a^2+b^2+c^2
=>a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2
=>2(ab+bc+ac)=0
=>ab+bc+ac=0
=>(ab+bc+ac)/abc=0
=>ab/abc+bc/abc+ac/abc=0
=>1/c+1/a+1/b=0
=> 1/a+1/b=-1/c
=> (1/a+1/b)^3=(-1/c)^3
=> 1/a^3+1/b^3+3/ab(1/a+1/b)=-1/c^3
=> 1/a^3+1/b^3+1/c^3+3/ab.(-1/c)=0
=> 1/a^3+1/b^3+1/c^3-3/abc=0
=> 1/a^3+1/b^3+1/c^3=3/abc (đpcm)
(a+b+c)^2=a^2+b^2+c^2
a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2
2(ab+bc+ac)=0
ab+bc+ac=0
(ab+bc+ac)/abc=0
ab/abc+bc/abc+ac/abc=0
1/c+1/a+1/b=0
=> 1/a+1/b=-1/c
=> (1/a+1/b)^3=(-1/c)^3
=> 1/a^3+1/b^3+3.(1/a.)(1/b).(1/a+1/b)=-1/c^3
=> 1/a^3+1/b^3+1/c^3.3ab.(-1/c)=0
=> 1/a^3+1/b^3+1/c^3=3/abc
Giải :
a3 + b3 + a2c + b2c - abc
= ( a3 + b3 ) + ( a2c + b2c - abc )
= ( a + b ) ( a2 - ab + b2 ) + c ( a2 - ab + b2 )
= ( a2 - ab + b2 ) ( a + b + c )
Vì a + b + c = 0 , nên ( a + b + c ) ( a2 - ab + b2 ) = 0
Do đó a3 + b3+ a2c + b2c - abc = 0
=a ^3+a^2c+a^2b-a^2b-abc+b^2c+b^3+b^2a-b^2a =a^2(a+b+c)-a^2b-abc+b^2(a+b+c)-b^2a = -a^2b-abc-b^2a = -ab(a+b+c)=-ab 0 =0 vậy đa thức này bằng 0