K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2017

áp dụng bdt cô-si 

\(\sqrt{\frac{y+z}{x}\cdot1}\le\left(\frac{y+z}{x}+1\right):2=\frac{x+y+z}{2x}\)

\(\Rightarrow\sqrt{\frac{x}{y+z}}\ge\frac{2x}{x+y+z}\)

bạn chứng minh tương tự ta cx có 

\(\sqrt{\frac{y}{x+z}}\ge\frac{2y}{x+y+z};\sqrt{\frac{z}{y+x}}\ge\frac{2z}{x+y+z}\)

cộng từng vế lại vs nhau ta có \(\sqrt{\frac{x}{y+z}}+\sqrt{\frac{y}{x+z}}+\sqrt{\frac{z}{x+y}}\ge\frac{2\left(x+y+z\right)}{x+y+z}=2\)

dấu = xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x=y+z\\y=z+x\\z=x+y\end{cases}}\Rightarrow x+y+z=0\ne gt\)

suy ra đẳng thức ko xảy ra

13 tháng 9 2017

đẳng thức không xảy ra

7 tháng 3 2021

Dễ dàng chứng minh được:

\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) với \(a,b,c>0\)(1)

Dấu bằng xảy ra \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

Theo đề bài, vì x, y, z > 0 nên áp dụng (1), ta có:

\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\)\(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\)(2)

Vì x y, z > 0 nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:

\(x+y\ge2\sqrt{xy}\)(3)

Chứng mih tương tự, ta được;

\(y+z\ge2\sqrt{yz}\)(4);

\(z+x\ge2\sqrt{zx}\)(5)

Từ (3), (4), (5), ta được:

\(2\left(x+y+z\right)\ge2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)

\(\Leftrightarrow x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Leftrightarrow2\left(x+y+z\right)\ge x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Leftrightarrow\frac{1}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\)\(\frac{1}{2\left(x+y+z\right)}\)

\(\Leftrightarrow\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\frac{x+y+z}{2}\)

7 tháng 3 2021

Mà theo đề bài, \(x+y+z\ge3\) nên:

\(\frac{x+y+z}{2}\ge\frac{3}{2}\)

Suy ra \(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\frac{3}{2}\left(6\right)\)

Từ (2) và (6), ta được:

\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)(điều phải chứng minh)

Dấu bằng xảy ra

\(\Leftrightarrow\hept{\begin{cases}x=y=z\\x+y+z=3\end{cases}\Leftrightarrow x=y=z=1}\)

Vậy nếu x, y, z > 0 và \(x+y+z\ge3\)thì \(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)

NV
18 tháng 9 2019

Theo tính chất của phân số, ta có:

\(\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}< \frac{\sqrt{x}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\) ; \(\frac{\sqrt{y}}{\sqrt{y}+\sqrt{z}}< \frac{\sqrt{y}+\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\); \(\frac{\sqrt{z}}{\sqrt{z}+\sqrt{x}}< \frac{\sqrt{z}+\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Cộng vế với vế:

\(\Rightarrow VT< \frac{2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=2\) (đpcm)

10 tháng 2 2020

Theo AM-GM: \(x^3+y^2\ge2\sqrt{x^3y^2}=2xy\sqrt{x}\)

\(\Rightarrow\frac{2\sqrt{x}}{x^3+y^2}\le\frac{2\sqrt{x}}{2xy\sqrt{x}}=\frac{1}{xy}\)

Tương tự: \(\frac{2\sqrt{y}}{y^3+z^2}\le\frac{1}{yz}\)

\(\frac{2\sqrt{z}}{z^3+x^2}\le\frac{1}{zx}\)

Cộng vế với vế => \(VT\le\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)

Theo AM-GM; \(VT\le\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\le\frac{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{z^2}+\frac{1}{x^2}}{2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

Dấu " = " xảy ra <=> x=y=z=1

10 tháng 2 2020

Áp dụng bất đẳng thức Cacuhy - Schwarz 

\(\Rightarrow\hept{\begin{cases}x^3+y^2\ge2\sqrt{x^3y^2}=2xy\sqrt{x}\\y^3+z^2\ge2\sqrt{y^3z^2}=2yz\sqrt{y}\\z^3+x^2\ge2\sqrt{z^3x^2}=2xz\sqrt{z}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\frac{2\sqrt{x}}{x^3+y^2}\le\frac{2\sqrt{x}}{2xy\sqrt{x}}=\frac{1}{xy}\\\frac{2\sqrt{y}}{y^3+z^2}\le\frac{2\sqrt{y}}{2yz\sqrt{y}}=\frac{1}{yz}\\\frac{2\sqrt{z}}{z^3+x^2}\le\frac{2\sqrt{z}}{2xz\sqrt{z}}=\frac{1}{xz}\end{cases}}\)

\(\Rightarrow VT\le\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\left(1\right)\)

Áp dụng bất đẳng thức Cacuchy Schwarz 

\(\Rightarrow\hept{\begin{cases}\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2y^2}}=\frac{2}{xy}\\\frac{1}{y^2}+\frac{1}{z^2}\ge2\sqrt{\frac{1}{y^2z^2}}=\frac{2}{yz}\\\frac{1}{z^2}+\frac{1}{x^2}\ge2\sqrt{\frac{1}{z^2x^2}}=\frac{2}{xz}\end{cases}}\)

\(\Rightarrow2\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\ge2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)\)

\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\ge\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow VT\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

\(\Leftrightarrow\frac{2\sqrt{x}}{x^3+y^2}+\frac{2\sqrt{y}}{y^3+z^2}+\frac{2\sqrt{z}}{z^3+x^2}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\left(đpcm\right)\)

1 tháng 3 2018

Ta có A=\(\frac{x^2}{x\sqrt{y}}+\frac{y^2}{y\sqrt{z}}+\frac{z^2}{z\sqrt{x}}\ge\frac{\left(x+y+z\right)^2}{x\sqrt{y}+y\sqrt{z}+z\sqrt{x}}\)

Áp dụng BĐt bu-nhi-a, ta có 

\(x\sqrt{y}+y\sqrt{z}+z\sqrt{x}\le\sqrt{\left(x+y+z\right)\left(xy+yz+zx\right)}\le\sqrt{\frac{1}{3}\left(x+y+z\right)^2\left(x+y+z\right)}\)

\(\Rightarrow A\ge\sqrt{\frac{x+y+z}{\frac{1}{3}}}=\sqrt{3\left(x+y+z\right)}\ge\sqrt{9}=3\)

=> A>=3 (ĐPCM)

Dấu = xảy ra <=> x=y=z=1

^^

9 tháng 6 2018

Sử dụng BĐT AM-GM, ta có: 

\(x^3+y^2\ge2yx\sqrt{x}\)

\(\Rightarrow\frac{2\sqrt{x}}{x^3+y^2}\le\frac{2\sqrt{x}}{2yx\sqrt{x}}=\frac{1}{xy}\)

Tương tự cộng lại suy ra: 

\(VT\le\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

3 tháng 2 2020

\(VT=\Sigma_{cyc}\frac{2\sqrt{x}}{x^3+y^2}\le\Sigma_{cyc}\frac{2\sqrt{x}}{2\sqrt{x^3y^2}}=\Sigma_{cyc}\frac{1}{\sqrt{x^2y^2}}=\Sigma_{cyc}\frac{1}{xy}\)

\(=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\) (áp dụng BĐT quen thuộc \(ab+bc+ca\le a^2+b^2+c^2\))

Đẳng thức xảy ra khi x = y = z = 1

3 tháng 2 2020

Sửa đề : \(\frac{2\sqrt{x}}{x^3+y^2}+\frac{2\sqrt{y}}{y^3+z^2}+\frac{2\sqrt{z}}{z^3+x^2}\)

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow\hept{\begin{cases}x^3+y^2\ge2\sqrt{x^3y^2}=2xy\sqrt{x}\\y^3+z^2\ge2\sqrt{y^3z^2}=2yz\sqrt{y}\\z^3+x^2\ge2\sqrt{z^3x^2}=2xz\sqrt{z}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\frac{2\sqrt{x}}{x^3+y^2}\le\frac{2\sqrt{x}}{2xy\sqrt{x}}=\frac{1}{xy}\\\frac{2\sqrt{y}}{y^3+z^2}\le\frac{2\sqrt{y}}{2yz\sqrt{y}}=\frac{1}{yz}\\\frac{2\sqrt{z}}{z^3+x^2}\le\frac{2\sqrt{z}}{2xz\sqrt{z}}=\frac{1}{xz}\end{cases}}\)

\(\Rightarrow VT\le\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\left(1\right)\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\hept{\begin{cases}\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2y^2}}=\frac{2}{xy}\\\frac{1}{y^2}+\frac{1}{z^2}\ge2\sqrt{\frac{1}{y^2z^2}}=\frac{2}{yz}\\\frac{1}{z^2}+\frac{1}{x^2}\ge2\sqrt{\frac{1}{x^2z^2}}=\frac{2}{xz}\end{cases}}\)

\(\Rightarrow2\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\ge2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)\)

\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\ge\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\left(2\right)\)

Từ (1) và (2) :

\(\Rightarrow VT\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

\(\Leftrightarrow\frac{2\sqrt{x}}{x^3+y^2}+\frac{2\sqrt{y}}{y^3+z^2}+\frac{2\sqrt{z}}{z^3+x^2}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\left(đpcm\right)\)

Chúc bạn học tốt !!!

23 tháng 5 2016

 

1) ( x, y, z chứng minh rằng : a) x + y + z xy+ yz + zx b) x + y + z 2xy – 2xz + 2yz c) x + y + z+3 2 (x + y + z) Giải: a) Ta xét hiệu x + y + z- xy – yz - zx =.2 .( x + y + z- xy – yz – zx) =đúng với mọi x;y;z Vì (x-y)2 0 với(x ; y Dấu bằng xảy ra khi x=y (x-z)2 0 với(x ; z Dấu bằng xảy ra khi x=z (y-z)2 0 với( z; y Dấu bằng xảy ra khi z=y Vậy x + y + z xy+ yz + zx Dấu bằng xảy ra khi x = y =z b)Ta xét hiệu x + y + z- ( 2xy – 2xz +2yz ) = x + y + z- 2xy +2xz –2yz =( x – y + z) đúng với mọi x;y;z Vậy x + y + z 2xy – 2xz + 2yz đúng với mọi x;y;z Dấu bằng xảy ra khi x+y=z c) Ta xét hiệu x + y + z+3 – 2( x+ y +z ) = x- 2x + 1 + y -2y +1 + z-2z +1 = (x-1)+ (y-1) +(z-1) 0 Dấu(=)xảy ra khi x=y=z=1 2) chứng minh rằng :a) ;b) c) Hãy tổng quát bài toángiảia) Ta xét hiệu = = = Vậy Dấu bằng xảy ra khi a=bb)Ta xét hiệu = VậyDấu bằng xảy ra khi a = b =cc)Tổng quát 3) Chứng minh (m,n,p,q ta đều có m+ n+ p+ q+1( m(n+p+q+1) Giải: (luôn đúng)Dấu bằng xảy ra khi 4) Cho a, b, c, d,e là các số thực chứng minh rằng a) b) c) Giải: a) (bất đẳng thức này luôn đúng) Vậy (dấu bằng xảy ra khi 2a=b) b) Bất đẳng thức cuối đúng. Vậy Dấu bằng xảy ra khi a=b=1 c) Bất đẳng thức đúng vậy ta có điều phải chứng minh5) Chứng minh rằng: Giải: a2b2(a2-b2)(a6-b6) 0 a2b2(a2-b2)2(a4+ a2b2+b4) 0Bất đẳng thứccuối đúng vậy ta có điều phải chứng minh 6) cho x.y =1 và x>y Chứng minh Giải: vì :xy nên x- y 0 x2+y2 ( x-y) x2+y2- x+y 0 x2+y2+2- x+y -2 0 x2+y2+()2- x+y -2xy 0 vì x.y=1 nên 2.x.y=2(x-y-)2 0 Điều này luôn luôn đúng . Vậy ta có điều phải chứng minh7) 1)CM: P(x,y)= 2)CM: (

Text

17 tháng 2 2020

\(RHS\ge\frac{\left(x+y+z\right)^2}{\sqrt{5x^2+2xy+y^2}+\sqrt{5y^2+2yz+z^2}+\sqrt{5z^2+2zx+x^2}}\)

Thử chứng minh \(\sqrt{5x^2+2xy+y^2}\le\frac{3\sqrt{2}}{2}x+\frac{\sqrt{2}}{2}y\) cái này xem sao

khi đó:

\(RHS\ge\frac{9}{\frac{3\sqrt{2}}{2}\left(x+y+z\right)+\frac{\sqrt{2}}{2}\left(x+y+z\right)}=\frac{3}{2\sqrt{2}}\)

Dấu "=" xảy ra tại x=y=z=1

20 tháng 2 2020

Cần chứng minh BĐT sau : \(\frac{x^2}{\sqrt{5x^2+2xy+y^2}}\ge\frac{5x-y}{8\sqrt{2}}\)

\(\Leftrightarrow8\sqrt{2}x^2\ge\left(5x-y\right)\sqrt{5x^2+2xy+y^2}\) ( 1 )

Xét 5x - y \(\le\)\(\Rightarrow\)VT \(\ge\)0 ; VP \(\le\)\(\Rightarrow\)BĐT đã được chứng minh

Xét 5x - y \(\ge\)0 . Bình phương 2 vế của ( 1 ), ta được :

\(128x^4\ge\left(25x^2-10xy+y^2\right)\left(5x^2+2xy+y^2\right)\)

\(\Leftrightarrow128x^4\ge125x^4+10x^2y^2-8xy^3+y^4\)

\(\Leftrightarrow3x^4-10x^2y^2+8xy^3-y^4\ge0\)

\(\Leftrightarrow\left(3x^4-3xy^3\right)+\left(10xy^3-10x^2y^2\right)+\left(xy^3-y^4\right)\ge0\)

\(\Leftrightarrow3x\left(x-y\right)\left(x^2+xy+y^2\right)+10xy^2\left(y-x\right)+y^3\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)\left(3x^3+3x^2y+3xy^2-10xy^2+y^3\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)\left[\left(3x^3-3xy^2\right)+\left(3x^2y-3xy^2\right)-\left(xy^2-y^3\right)\right]\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(3x^2+6xy-y^2\right)\ge0\)( luôn đúng )

( Vì \(5x-y\ge0\Rightarrow x\ge\frac{y}{5}\)\(\Rightarrow3x^2+6xy-y^2\ge3.\left(\frac{y}{5}\right)^2+6.\frac{y}{5}.y-y^2=\frac{8}{25}y^2\ge0\)

Tương tự : \(\frac{y^2}{\sqrt{5y^2+2yz+z^2}}\ge\frac{5y-z}{8\sqrt{2}}\)\(\frac{z^2}{\sqrt{5z^2+2xz+x^2}}\ge\frac{5z-x}{8\sqrt{2}}\)

Cộng từng vế 3 BĐT lại với nhau, ta được : 

\(\frac{x^2}{\sqrt{5x^2+2xy+y^2}}+\frac{y^2}{\sqrt{5y^2+2yz+z^2}}+\frac{z^2}{\sqrt{5z^2+2xz+x^2}}\)

\(\ge\frac{5x-z+5y-z+5z-x}{8\sqrt{2}}=\frac{4\left(x+y+z\right)}{8\sqrt{2}}=\frac{3}{2\sqrt{2}}\)

Dấu "=' xảy ra khi x = y = z = 1

Vậy BĐT đã được chứng minh