Hình thang cân ABCD có đường chéo BD vuông góc với BC, DB là tia phân giác của góc D.Tính chu vi hình thang biết BC=3cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài ABCD là ht cân đáy AB//CD
=>AD=BC=3cm (cạnh bên htc với BC=3cm-gt)
Kẻ BE//AD (E thuộc CD) thì
tứ giác ABED là hbh (2 cặp cạnnh //).Hình bh đó có đ/chéo DB cũng là phân giác góc D (gt) nên hbh ABED là h/thoi
=>DE=AB=BE=AD=3cm và AE vuông góc BD (tính chất 2 đ/chéo h/thoi)
Vậy AE//BC (cùng vuông góc với BD)
nên tứ giác ABCE cũng là hbh (2 cặp cạnh //).Hình bh đó có AB=BC nên hbh ABCE là h/thoi
=> CE=CB=3cm
Mặt khác tam giác BCE có BC=CE=EB=3cm nên tam giác BCE là tam giác đều
=> góc CBE=60o < góc CBD=1v (gt)
=> tia BE nằm giữa 2 tia BC,BD
=> điểm E nằm giữa 2 điểm C,D
=> CD= CE+ED=3cm+3cm
Vậy chu vi htc ABCD=5.3cm=15cm
minh nghi bai nay co mot so sai sot vi DB song song voi BC nen AC cung phai song song voi AD (t/c 2 duong cheo hinh thang chu ko phai la AD song song voi AE
Theo đề bài ABCD là ht cân đáy AB//CD =>AD=BC=3cm (cạnh bên htc với BC=3cm-gt)
Kẻ BE//AD (E thuộc CD) thì tứ giác ABED là hbh (2 cặp cạnnh //).
Hình bh đó có đ/chéo DB cũng là phân giác góc D (gt) nên hbh ABED là h/thoi =>DE=AB=BE=AD=3cm và AE vuông góc BD (tính chất 2 đ/chéo h/thoi)
Vậy AE//BC (cùng vuông góc với BD) nên tứ giác ABCE cũng là hbh (2 cặp cạnh //).
Hình bh đó có AB=BC nên hbh ABCE là h/thoi => CE=CB=3cm
Mặt khác tam giác BCE có BC=CE=EB=3cm nên tam giác BCE là tam giác đều
=> góc CBE=60o < góc CBD=1v (gt) => tia BE nằm giữa 2 tia BC,BD => điểm E nằm giữa 2 điểm C,D => CD= CE+ED=3cm+3cm
Vậy chu vi htc ABCD=5.3cm=15cm
hình thang ABCD
=> AD=BC = 3cm ( định lí 1 )
AB//CD ( ABCD là hình thang cân )
=> góc B1 = góc D2 ( SLT )
góc D1 = góc D2 ( gt )
=> góc B1 = góc D1
=> tg ABD cân tại A
=> AD=AB= 3cm
tg DBC vuông ở B
hình thang cân ABCD
=> góc D = góc C
2 lần góc D1 = góc C
=> góc DBC = góc D1 + 2 lần góc D1 = 90 độ
3 lần góc D1 = 90 độ
=> góc D1 = 900 : 3
= 300
=> góc C = 900 - góc D1 = 900 - 300 = 600
Gọi DA giao CB tại O
tg ODC có DB là pgiác
BD vuông góc với Oc
=> tg ODC cân ở D
lại có góc C = 60 độ
=> tg OCD đều
=> CD = CO
mà tg ODC đều nên DB là đường phân giác đồng thời là đường trung tuyến
=> OB= BC
CD= CO = OB+BC
mà OB = BC ( cmt )
=> CĐ= CƠ = 2CB = 2.3 = 6 ( cm )
Chu vi của hình thang cân ABCD là
AB+BC+AD+CD = 3+3+3+6= 15 (cm )
hình thang ABCD
=> AD=BC = 3cm ( định lí 1 )
AB//CD ( ABCD là hình thang cân )
=> góc B1 = góc D2 ( SLT )
góc D1 = góc D2 ( gt )
=> góc B1 = góc D1
=> tg ABD cân tại A
=> AD=AB= 3cm
tg DBC vuông ở B
hình thang cân ABCD
=> góc D = góc C
2 lần góc D1 = góc C
=> góc DBC = góc D1 + 2 lần góc D1 = 90 độ
3 lần góc D1 = 90 độ
=> góc D1 = 900 : 3
= 300
=> góc C = 900 - góc D1 = 900 - 300 = 600
Gọi DA giao CB tại O
tg ODC có DB là pgiác
BD vuông góc với Oc
=> tg ODC cân ở D
lại có góc C = 60 độ
=> tg OCD đều
=> CD = CO
mà tg ODC đều nên DB là đường phân giác đồng thời là đường trung tuyến
=> OB= BC
CD= CO = OB+BC
mà OB = BC ( cmt )
=> CĐ= CƠ = 2CB = 2.3 = 6 ( cm )
Chu vi của hình thang cân ABCD là
AB+BC+AD+CD = 3+3+3+6= 15 (cm )