K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đặt \(A=\frac{b+c+5}{a+1}+\frac{c+a+4}{b+2}+\frac{a+b+3}{c+3}\)

\(=\frac{12-\left(a+1\right)}{a+1}+\frac{12-\left(b+2\right)}{b+2}+\frac{12-\left(c+3\right)}{c+3}\)

\(=\frac{12}{a+1}+\frac{12}{b+2}+\frac{12}{c+3}-3\ge\frac{108}{a+b+c+1+2+3}-3=\frac{108}{12}-3=6\)(Q.E.D)

dấu = xảy ra khi a+1=b+2=c+3<=>a=3;b=2;c=1

NV
18 tháng 4 2021

Ta chứng minh BĐT phụ sau:

\(\dfrac{a^3}{a^2+b^2}\ge\dfrac{2a-b}{2}\)

Thật vậy, BĐT tương đương:

\(2a^3-\left(2a-b\right)\left(a^2+b^2\right)\ge0\)

\(\Leftrightarrow b\left(a-b\right)^2\ge0\) (luôn đúng với a;b dương)

Tương tự: \(\dfrac{b^3}{b^3+c^3}\ge\dfrac{2b-c}{2}\) ; \(\dfrac{c^3}{c^3+a^3}\ge\dfrac{2c-a}{2}\)

Cộng vế với vế:

\(VT\ge\dfrac{a+b+c}{2}=3\) (đpcm)

13 tháng 8 2017

1) ta có: A= x^3 -8y^3=> A=(x-2y)(x^2 +2xy+4y^2)=>A=5.(29+2xy)   (vì x-2y=5 và x^2+4y^2=29)     (1)

Mặt khác : x-2y=5(gt)=> (x-2y)^2=25=> x^2-4xy+4y^2=25=>29-4xy=25(vì x^2+4y^2=29)

                                                                                          => xy=1    (2)

Thay (2) vào (1) ta đc: A= 5.(29+2.1)=155

Vậy gt của bt A là 155

2) theo bài ra ta có: a+b+c=0 => a+b=-c=>(a+b)^2=c^2=> a^2 +b^2+2ab=c^2=>c^2-a^2-b^2=2ab

=> \(\left(c^2-a^2-b^2\right)^2=4a^2b^2\)

=>\(c^4+a^4+b^4-2c^2a^2+2a^2b^2-2b^2c^2=4a^2b^2\)

=>\(a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2\)

=>\(2\left(a^4+b^4+c^4\right)=\left(a^2+b^2+c^2\right)^2\)

=> \(a^4+b^4+c^4=\frac{1}{2}\left(a^2+b^2+c^2\right)^2\) (đpcm)

NV
10 tháng 3 2023

\(\dfrac{a}{\sqrt{b^3+1}}=\dfrac{a}{\sqrt{\left(b+1\right)\left(b^2-b+1\right)}}\ge\dfrac{2a}{b+1+b^2-b+1}=\dfrac{2a}{b^2+2}\)

Tương tự và cộng lại:

\(VT\ge\dfrac{2a}{b^2+2}+\dfrac{2b}{c^2+2}+\dfrac{2c}{a^2+2}=a-\dfrac{ab^2}{b^2+2}+b-\dfrac{bc^2}{c^2+2}+c-\dfrac{ca^2}{a^2+2}\)

\(VT\ge6-\left(\dfrac{ab^2}{b^2+2}+\dfrac{bc^2}{c^2+2}+\dfrac{ca^2}{c^2+2}\right)\)

Ta có:

\(\dfrac{ab^2}{b^2+2}=\dfrac{2ab^2}{2b^2+4}=\dfrac{2ab^2}{b^2+b^2+4}\le\dfrac{2ab^2}{3\sqrt[3]{4b^4}}=\dfrac{a}{3}\sqrt[3]{2b^2}=\dfrac{a}{3}\sqrt[3]{2.b.b}\le\dfrac{a}{9}\left(2+b+b\right)\)

Tương tự và cộng lại:

\(VT\ge6-\left(\dfrac{2a}{9}\left(b+1\right)+\dfrac{2b}{9}\left(c+1\right)+\dfrac{2c}{9}\left(a+1\right)\right)\)

\(=6-\dfrac{2}{9}\left(a+b+c\right)-\dfrac{2}{9}\left(ab+bc+ca\right)\ge6-\dfrac{2}{9}\left(a+b+c\right)-\dfrac{2}{27}\left(a+b+c\right)^2=2\)

Dấu "=" xảy ra khi \(a=b=c=1\)

2 tháng 8 2017

lam giong nhu khuyen hoang nhung me bao lo

(a+2)2 = 0,2

(b-3)4= 2

(5-c)6=0