tìm x:
a) 3(x-2)2 + (x-1)3 = x3 + 29
b) (x + 2)3 - x(x - 1) (x +1)-6x2 = 3 - 5x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(\left(3x-2\right)\left(2x-1\right)-\left(6x^2-3x\right)=0\)
\(\Leftrightarrow2x-1=0\)
hay \(x=\dfrac{1}{2}\)
b: Ta có: \(x^3-\left(x+1\right)\left(x^2-x+1\right)=x\)
\(\Leftrightarrow x^3-x^3-1=x\)
hay x=-1
c: Ta có: \(56x^4+7x=0\)
\(\Leftrightarrow7x\left(8x^3+1\right)=0\)
\(\Leftrightarrow x\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)
d: Ta có: \(x^2-5x-24=0\)
\(\Leftrightarrow\left(x-8\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-3\end{matrix}\right.\)
`a)2x^2+3(x-1)(x+1)=5x(x+1)`
`<=>2x^2+3x^2-3=5x^2+5x`
`<=>5x=-3`
`<=>x=-3/5`
__________________________________________
`b)(x-3)^3+3-x=0` nhỉ?
`<=>(x-3)^3-(x-3)=0`
`<=>(x-3)(x^2-1)=0`
`<=>[(x=3),(x^2=1<=>x=+-1):}`
__________________________________________
`c)5x(x-2000)-x+2000=0`
`<=>5x(x-2000)-(x-2000)=0`
`<=>(x-2000)(5x-1)=0`
`<=>[(x=2000),(x=1/5):}`
__________________________________________
`d)3(2x-3)+2(2-x)=-3`
`<=>6x-9+4-2x=-3`
`<=>4x=2`
`<=>x=1/2`
__________________________________________
`e)x+6x^2=0`
`<=>x(1+6x)=0`
`<=>[(x=0),(x=-1/6):}`
1) \(\left(\dfrac{1}{2}x+3\right)\left(x^2-4x-6\right)\)
\(=\dfrac{1}{2}x^3-2x^2-3x+3x^2-12x-18\)
\(=\dfrac{1}{2}x^3+x^2-15x-18\)
2) \(\left(6x^2-9x+15\right)\left(\dfrac{2}{3}x+1\right)\)
\(=4x^3+6x^2-6x^2-9x+10x+15\)
\(=4x^3+x+15\)
3) Ta có: \(\left(3x^2-x+5\right)\left(x^3+5x-1\right)\)
\(=3x^5+15x^2-3x^2-x^4-5x^2+x+5x^3+25x-5\)
\(=3x^5-x^4+5x^3+10x^2+26x-5\)
4) Ta có: \(\left(x-1\right)\left(x+1\right)\left(x-2\right)\)
\(=\left(x^2-1\right)\left(x-2\right)\)
\(=x^3-2x^2-x+2\)
\(a,PT\Leftrightarrow x^3-6x^2+12x-8-x^3+x+6x^2-18x-10=0\)
\(\Leftrightarrow-5x-18=0\)
\(\Leftrightarrow x=-\dfrac{18}{5}\)
Vậy ...
\(b,PT\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-6+10=0\)
\(\Leftrightarrow12x+6=0\)
\(\Leftrightarrow x=-\dfrac{1}{2}\)
Vậy ...
\(c,PT\Leftrightarrow\left(x+1\right)^3+3^3=0\)
\(\Leftrightarrow\left(x+1+3\right)\left(x^2+2x+1-3x-3+9\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x^2-x+7\right)=0\)
Thấy : \(x^2-\dfrac{2.x.1}{2}+\dfrac{1}{4}+\dfrac{27}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{27}{4}\ge\dfrac{27}{4}>0\)
\(\Rightarrow x+4=0\)
\(\Leftrightarrow x=-4\)
Vậy ...
\(d,PT\Leftrightarrow\left(x-2\right)^3+1^3=0\)
\(\Leftrightarrow\left(x-2+1\right)\left(x^2-4x+4-x+2+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-5x+7\right)=0\)
Thấy : \(x^2-5x+7=x^2-\dfrac{5.x.2}{2}+\dfrac{25}{4}+\dfrac{3}{4}=\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
\(\Rightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy ...
Bài 2:
x^3+6x^2+12x+m chia hết cho x+2
=>x^3+2x^2+4x^2+8x+4x+8+m-8 chia hết cho x+2
=>m-8=0
=>m=8
a: Ta có: \(\left(x-3\right)\left(x^2+3x+9\right)-x\left(x^2-3\right)=0\)
\(\Leftrightarrow x^3-27-x^3+3x=0\)
\(\Leftrightarrow x=9\)
b: Ta có: \(8x^4+x=0\)
\(\Leftrightarrow x\left(8x^3+1\right)=0\)
\(\Leftrightarrow x\left(2x+1\right)\left(4x^2-2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)
a,x(2x-1)-(x-1)^2-x^2=0
<=>x(2x-1-x)-(x-1)^2=0
<=>x(x-1)-(x-1)^2=0
<=>(x-x+1)(x-1)=0
<=>x-1=0
<=>x=1
b,(x+2)^3-x^3-6x^2=4
<=>x^3+6x^2+12x+8-x^3-6x^2=4
<=>12x+8=4
<=>x=-1/3
tick mik nha
`a)x(2x-1)-(x-1)^2-x^2=0`
`<=>2x^2-x-x^2+2x-1-x^2=0`
`<=>x-1=0`
`<=>x=1`
Vậy `x=1.`
`b)(x+2)^3-x^3-6x^2=4`
`<=>x^3+6x^2+12x+8-x^3-6x^2=4`
`<=>12x+8=4`
`<=>12x=-4`
`<=>x=-1/3`
Vậy `x=-1/3.`
a) Ta có : 3(x - 2)2 + (x - 1)3 = x3 + 29
=> 3(x2 - 4x + 4) + x3 - 3x2 + 3x - 1 = x3 + 29
=> 3x2 - 12x + 12 + x3 - 3x2 + 3x - 1 - x3 - 29 = 0
=> -9x - 18 = 0
=> -9x = 18
=> x = -2
Vậy x = -2