K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2017

a. tám giác ABC có A=90, B=60 => C=30

trong 1 tam giác vuông, cạnh đối diện với góc 30 độ thì =1/2 cạnh huyền

=> 2AB=BC hay BC=12

áp dụng đlý pytago vào ABC, ta tính đc AC=\(6\sqrt{3}\)

b. tam giác ABC có BD là tia phân giác góc B =>\(\frac{AD}{DC}=\frac{AB}{BC}< =>\frac{AD}{AB}=\frac{DC}{BC}=>\frac{AD+DC}{AB+BC}=\frac{AC}{6+12}=\frac{6\sqrt{3}}{18}\)

=>\(\frac{AD}{AB}=\frac{6\sqrt{3}}{18}=>AD=\frac{6\sqrt{3}.6}{18}=2\sqrt{3}\)

áp dụng đlý pytago vào ABD => BD=\(4\sqrt{3}\)

28 tháng 3 2022

Xét ΔABC vuông ở A, theo định lý Pi-ta-go ta được :

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

Ta có : AD là phân giác \(\widehat{BAC}\)

\(\Rightarrow\dfrac{BD}{DC}=\dfrac{AB}{AC}\)

hay \(\dfrac{BD}{DC}=\dfrac{6}{8}\)

\(\Rightarrow\dfrac{BD}{6}=\dfrac{DC}{8}=\dfrac{BD+DC}{6+8}=\dfrac{10}{14}=\dfrac{5}{7}\)

\(\Rightarrow BD=\dfrac{5}{7}.6=\dfrac{30}{7}\left(cm\right)\)

\(\Rightarrow DC=\dfrac{5}{7}.8=\dfrac{40}{7}\left(cm\right)\)

28 tháng 3 2022

Hình bạn tự kẻ nhé!

Xét tam giác ABC vuông tại A có:

             AB2 + AC2 = BC2      ( định lý Pytago )

=>              62 + 8= BC2

<=>            36 + 64 = BC2

<=>                  100 = BC2

<=>                   BC = 10 (cm)       ( vì BC > 0 )

Xét tam giác ABC có: BD là đường pg của tam giác ABC

 =>              DA / DC = AB / BC

 => DA / ( DA + DC ) = AB/ ( BC + AB )

<=>              DA / AC = 3/8

<=>                AD / 8  = 3/8

 <=>                     AD = 3 (cm)

Vậy AD = 3 cm. 

Bài 2: 

a: Đây là tam giác vuông

b: Đây ko là tam giác vuông

9 tháng 6 2019

giúp vs ạ

29 tháng 4 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra tam giác ABE đều ⇒ AB = BE = EA = 6 (cm)     (1)

Khi đó: CE = BC + BE = 12 + 6 = 18 (cm)

Tam giác ACE có AE // BD nên suy ra:

a) Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{ACB}+60^0=90^0\)

hay \(\widehat{ACB}=30^0\)(1)

Xét ΔABC có \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\left(30^0< 60^0< 90^0\right)\)

nên AB<AC<BC

b) Xét ΔABD vuông tại A và ΔKBD vuông tại K có 

BD chung

\(\widehat{ABD}=\widehat{KBD}\)(BD là tia phân giác của \(\widehat{ABK}\))

Do đó: ΔABD=ΔKBD(cạnh huyền-góc nhọn)

c) Ta có: BD là tia phân giác của \(\widehat{ABC}\)(gt)

nên \(\widehat{ABD}=\widehat{DBC}=\dfrac{\widehat{ABC}}{2}=\dfrac{60^0}{2}=30^0\)(2)

Từ (1) và (2) suy ra \(\widehat{DBC}=\widehat{DCB}\)

Xét ΔDBC có \(\widehat{DBC}=\widehat{DCB}\)(cmt)

nên ΔDBC cân tại D(Định lí đảo của tam giác cân)

Xét ΔBDK vuông tại K và ΔCDK vuông tại K có 

DB=DC(ΔDBC cân tại D)

DK chung

Do đó: ΔBDK=ΔCDK(Cạnh huyền-cạnh góc vuông)

Suy ra: BK=CK(hai cạnh tương ứng)

hay K là trung điểm của BC(Đpcm)