K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\dfrac{2}{6x-5-9x^2}\)

\(=\dfrac{2}{-9x^2+6x-5}\)

\(=\dfrac{2}{-\left(9x^2-6x+5\right)}\)

\(=\dfrac{2}{-\left(9x^2-6x+1+4\right)}\)

\(=\dfrac{2}{-\left(3x-1\right)^2-4}\)

\(\left(3x-1\right)^2>=0\forall x\)

=>\(-\left(3x-1\right)^2< =0\forall x\)

=>\(-\left(3x-1\right)^2-4< =-4\forall x\)

=>\(A=\dfrac{2}{-\left(3x-1\right)^2-4}>=\dfrac{2}{-4}=-\dfrac{1}{2}\forall x\)

Dấu '=' xảy ra khi 3x-1=0

=>3x=1

=>\(x=\dfrac{1}{3}\)

9 tháng 8 2021

A= 4(x-2)^2 - 9 >= -9

Min A=-9 khi x=2

B= 9(x+1/3)^2 +3 >=3

Min B=3 khi x= -1/3

4 tháng 11 2019

\(A=\frac{2}{6x-5-9x^2}\)

\(\Leftrightarrow A=\frac{-2}{9x^2-6x+5}\)

\(\Leftrightarrow A=\frac{-2}{\left(3x-1\right)^2+4}\)

Vì \(\left(3x-1\right)^2\ge0\forall x\Rightarrow\left(3x-1\right)^2+4\ge4\)

\(\Rightarrow\frac{1}{\left(3x-1\right)^2+4}\le\frac{1}{4}\)

\(\Rightarrow\frac{-2}{\left(3x-1\right)^2+4}\ge\frac{-2}{4}\)

\(\Rightarrow A\ge\frac{-1}{2}\)

\(MinA=\frac{-1}{2}\Leftrightarrow3x-1=0\Leftrightarrow x=\frac{1}{3}\)

4 tháng 11 2019

Ta có: A = \(\frac{2}{6x-5-9x^2}=\frac{2}{-\left(9x^2-6x+1\right)-4}=\frac{2}{-\left(3x-1\right)^2-4}\ge-\frac{1}{2}\)

Dấu "=" xảy ra <=> \(3x-1=0\) <=> \(x=\frac{1}{3}\)

Vậy MinA = -1/2 <=> x=  1/3

5 tháng 6 2016

-1/2

5 tháng 6 2016

Nhân A với mẫu rồi viết theo phương trình bậc 2 ẩn x, tham số A tình den ta là được

 

AH
Akai Haruma
Giáo viên
6 tháng 11 2023

Lời giải:

$A=(9x^2+6xy+y^2)+y^2-6x+4y+17$

$=(3x+y)^2-2(3x+y)+y^2+6y+17$

$=(3x+y)^2-2(3x+y)+1+(y^2+6y+9)+7$

$=(3x+y-1)^2+(y+3)^2+7\geq 0+0+7=7$

Vậy GTNN của biểu thức là $7$. Giá trị này đạt được khi $3x+y-1=y+3=0$

$\Leftrightarrow y=-3; x=\frac{4}{3}$

$A$ không có max bạn nhé.

25 tháng 6 2021

`A=x^2-2x+5`

`=x^2-2x+1+4`

`=(x-1)^2+4>=4`

Dấu "=" `<=>x=1`

`B=4x^2+4x+3`

`=4x^2+4x+1+2`

`=(2x+1)^2+2>=2`

Dấu "=" xảy ra khi `x=-1/2`

`C=9x^2-6x+7`

`=9x^2-6x+1+6`

`=(3x-1)^2+6>=6`

Dấu '=' xảy ra khi `x=1/3`

`D=5x^2+3x+8`

`=5(x^2+3/5x)+8`

`=5(x^2+3/5x+9/100-9/100)+8`

`=5(x+3/10)^2+151/20>=151/20`

Dấu "=" xảy ra khi `x=-3/10`

25 tháng 6 2021

\(A=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)

Ta có: \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\Rightarrow A_{min}=4\) khi \(x=1\)

\(B=4x^2+4x+3=4x^2+4x+1+2=\left(2x+1\right)^2+2\)

Ta có: \(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2+2\ge2\Rightarrow B_{min}=2\) khi \(x=-\dfrac{1}{2}\)

\(C=9x^2-6x+7=9x^2-6x+1+6=\left(3x-1\right)^2+6\)

Ta có: \(\left(3x-1\right)^2\ge0\Rightarrow\left(3x-1\right)^2+6\ge6\Rightarrow C_{min}=6\) khi \(x=\dfrac{1}{3}\)

\(D=5x^2+3x+8\Rightarrow5\left(x^2+2.x.\dfrac{3}{10}+\dfrac{9}{100}\right)+\dfrac{151}{20}=5\left(x+\dfrac{3}{10}\right)^2+\dfrac{151}{20}\)

Ta có: \(5\left(x+\dfrac{3}{10}\right)^2\ge0\Rightarrow5\left(x+\dfrac{3}{10}\right)^2+\dfrac{151}{20}\ge\dfrac{151}{20}\)

\(\Rightarrow D_{min}=\dfrac{151}{20}\) khi \(x=-\dfrac{3}{10}\)

16 tháng 6 2016

bạn sửa thành tìm GTNN 

6x-5-9x2=-(9x2-6x+5)

=-[(3x)2-2*3x+1+4]

=-[(3x-1)2+4]

Vì \(\left(3x-1\right)^2\ge0\)

\(\Rightarrow\left(3x-1\right)^2+4\ge4\)

\(\Rightarrow-\left[\left(3x-1\right)^2+4\right]\le-4\)

Theo đề bài \(A=\frac{2}{6x-5-9x^2}\)(vì 2>0 nên A đạt GTNN khi GTLN)

Mẫu đạt GTLN=-4, khi đó \(3x-1=0\Leftrightarrow x=\frac{1}{3}\)

Vậy A đạt GTNN=\(\frac{2}{-4}=-\frac{1}{2}\Leftrightarrow x=\frac{1}{3}\)

2 tháng 8 2017

\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)

\(=\sqrt{\left(1-3x\right)^2}+\sqrt{\left(3x-2\right)^2}\)

\(=\left|1-3x\right|+\left|3x-2\right|\)

\(\ge\left|1-3x+3x-2\right|=\left|-1\right|=1\)

Dấu "=" xảy ra \(\Leftrightarrow\left(1-3x\right)\left(3x-2\right)\ge0\Leftrightarrow\frac{1}{3}\le x\le\frac{2}{3}\)

Vậy \(A_{min}=1\) tại \(\frac{1}{3}\le x\le\frac{2}{3}\)

2 tháng 8 2017

Xin lỗi cậu tớ mới học lớp 7 thôi

2 tháng 7 2019

Ta có: A=\(\frac{-2}{9x^2-6x+1+4}\) =\(\frac{-2}{\left(3x-1\right)^2+4}\)\(\ge\)\(\frac{-2}{4}\)=\(\frac{-1}{2}\)

Vậy giá trị nhỏ nhất của A là \(\frac{-1}{2}\)khi x=\(\frac{1}{3}\)

2 tháng 7 2019

\(A=\frac{2}{6x-5-9x^2}\)

\(A=\frac{2}{-9x^2+6x-1-4}\)

\(A=\frac{2}{-\left(9x^2-6x+1\right)-4}\)

\(A=\frac{2}{-\left(3x-1\right)^2-4}\)

Vì \(-\left(3x-1\right)^2\le0\)

\(\Rightarrow-\left(3x-1\right)^2-4\le-4\)

\(\Rightarrow\frac{2}{-\left(3x-1\right)^2-4}\ge\frac{2}{-4}\)

\(\Rightarrow A\ge\frac{-1}{2}\)

Vậy \(GTNN_A=\frac{-1}{2}\)tại \(x=\frac{1}{3}\)

28 tháng 3 2016

2/(-(9x^2-6x+5)=-2/((9x^2-6x+1)+4)

GTNN là -2/4

giỏi quá tuấn ơi!