Tìm số tự nhiên n để
a) n3-n+1 chia hết cho 7
b) 2n-1 chia hết cho 7
c)n2+(n+1)2+(n+2)2+(n+3)2chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
11:
n^3-n^2+2n+7 chia hết cho n^2+1
=>n^3+n-n^2-1+n+8 chia hết cho n^2+1
=>n+8 chia hết cho n^2+1
=>(n+8)(n-8) chia hết cho n^2+1
=>n^2-64 chia hết cho n^2+1
=>n^2+1-65 chia hết cho n^2+1
=>n^2+1 thuộc Ư(65)
=>n^2+1 thuộc {1;5;13;65}
=>n^2 thuộc {0;4;12;64}
mà n là số tự nhiên
nên n thuộc {0;2;8}
Thử lại, ta sẽ thấy n=8 không thỏa mãn
=>\(n\in\left\{0;2\right\}\)
a: \(n^3-2⋮n-2\)
=>\(n^3-8+6⋮n-2\)
=>\(6⋮n-2\)
=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
b: \(n^3-3n^2-3n-1⋮n^2+n+1\)
=>\(n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)
=>\(3⋮n^2+n+1\)
=>\(n^2+n+1\in\left\{1;-1;3;-3\right\}\)
mà \(n^2+n+1=\left(n+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall n\)
nên \(n^2+n+1\in\left\{1;3\right\}\)
=>\(\left[{}\begin{matrix}n^2+n+1=1\\n^2+n+1=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)
b) ( 2n + 9 ) chia hết cho ( n + 1 )
=> 2n + 2 + 7 chia hết cho ( n + 1 )
=> 2 . ( n + 1 ) chia hết cho ( n + 1 ) mà 2 . ( n + 1 ) chia hết cho ( n + 1 )
=> 7 chia hết cho ( n + 1 ) => ( n + 1 ) thuộc Ư ( 7 ) = { 1 , 7 }
Vậy n thuộc { 1 , 7 }
1)2n+5-2n-1
=>4 chia hết cho 2n-1
ước của 4 là 1 2 4
2n-1=1=>n=.....
tiếp với 2 và 4 nhé
Bài 1:
a) n thuộc N
b) để 4n + 5 chia hết cho 5
=> 4n chia hết cho 5
=> n chia hết cho 5
=> n thuộc bội dương của 5
c) để 38 - 3n chia hết cho n
=> 38 chia hết cho n
=> n thuộc Ư(38) = {1;-1;2;-2;19;-19;38;-38)
...
xog bn xét gtri nha!
d) để n + 5 chia hết cho n + 1
=> n + 1 + 4 chia hết cho n + 1
=> 4 chia hết cho n + 1
=>...
e) để 3n + 4 chia hết cho n -1
=> 3n - 3 + 7 chia hết cho n - 1
3.(n-1) +7 chia hết cho n - 1
...
Bài 2:
a) để 3n + 2 chia hết cho n - 1
=> 3n - 3 + 5 chia hết cho n - 1
3.(n-1) + 5 chia hết cho n - 1
...
b) n^2 + 2n + 7 chia hết cho n + 2
n.(n+2) + 7 chia hết cho n + 2
=> 7 chia hết cho n + 2
=>...
c) n^2 + 1 chia hết cho n - 1
=> n^2 - n + n - 1 + 2 chia hết cho n - 1
=> (n+1).(n-1) + 2 chia hết cho n -1
=> 2 chia hết cho n - 1
d) n + 3 + 5 chia hết cho n + 3
e) n -1 + 7 chia hết cho n - 1
f) 4n - 2 + 7 chia hết cho 2n - 1
...
Câu 1 :
\(\frac{5}{x+1}\)\(=1\)
\(5:\left(x+1\right)=1\)
\(x+1=5:1\)
\(x+1=5\)
\(\Rightarrow x=4\)
Giả sử A = n^2 + 3n + 5 chia hết cho 121
=> 4A = 4n^2 + 12n + 20 chia hết cho 121
=> 4A = (2n + 3)^2 + 11 chia hết cho 121 (1)
=> 4A = (2n + 3 )^2 + 11 chia hết cho 11 (vì 121 chia hết cho 11)
Vì 11 chia hết cho 11 nên (2n + 3)^2 phải chia hết cho 11
Lại có 11 là số nguyên tố nên 2n + 3 cũng chia hết cho 11
=> (2n + 3)^2 chia hết cho 11^2 = 121 (2)
Từ (1)(2) suy ra 11 phải chia hết cho 121 (vô lí)
Vậy : n^2 + 3n + 5 không chia hết cho 121 với mọi n thuộc N
hi xin lỗi nha đó là bài khác thui
link nè
Bài toán lớp 9 !!!!!!!? | Yahoo Hỏi & Đáp
cảm ơn bạn nha