K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2017

 Xét 3 TH : 
1) a < b 
Khi đó ta có ab + 2009a < ab + 2009b hay a(b+2009) < b(a+2009) 
Chia 2 vế cho b(b+2009) ta được a/b < (a+2009)/(b+2009) 

2) a = b ---> a/b = (a+2009)/(b+2009) = 1 

3) a > b 
Khi đó ta có ab + 2009a > ab + 2009b hay a(b+2009) > b(a+2009) 
Chia 2 vế cho b(b+2009) ta được a/b > (a+2009)/(b+2009) 

Tóm lại 
a/b < (a+2009)/(b+2009) nếu a < b 
a/b = (a+2009)/(b+2009) nếu a = b 
a/b > (a+2009)/(b+2009) nếu a > b

Hay mình làm cụ thể hơn cho bạn dễ hiểu

13 tháng 8 2017

3) Đặt b+c=x;c+a=y;a+b=z.

=>a=(y+z-x)/2 ; b=(x+z-y)/2 ; c=(x+y-z)/2

BĐT cần CM <=> \(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\ge\frac{3}{2}\)

VT=\(\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}-1+\frac{x}{y}+\frac{z}{y}-1+\frac{x}{z}+\frac{y}{z}-1\right)\)

\(=\frac{1}{2}\left[\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)-3\right]\)

\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)(Cauchy)

Dấu''='' tự giải ra nhá

13 tháng 8 2017

Bài 4 

dễ chứng minh \(\left(a+b\right)^2\ge4ab;\left(b+c\right)^2\ge4bc;\left(a+c\right)^2\ge4ac\)

\(\Rightarrow\left(a+b\right)^2\left(b+c\right)^2\left(a+c\right)^2\ge64a^2b^2c^2\)

rồi khai căn ra \(\Rightarrow\)dpcm. 

đấu " = " xảy ra \(\Leftrightarrow\)\(a=b=c\)

11 tháng 3 2019

Ta có: \(\left(a-b\right)^2\ge0\) (đúng) 

\(\Rightarrow a^2-2ab+b^2\ge0\Rightarrow a^2+b^2\ge2ab\)

Ta có: \(\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}\ge\frac{2ab}{ab}=2\)

"=" khi a=b. Nhưng a<b nên dấu bằng ko xảy ra,vậy ta có đpcm

12 tháng 3 2019

                         Giải

Không giảm tính tổng quát, giả sử \(a\ge b\) suy ra a = b + m \(\left(m\ge0\right)\)

Ta có: \(\frac{a}{b}+\frac{b}{a}=\frac{b+m}{b}+\frac{b}{b+m}\)

           \(=1+\frac{m}{b}+\frac{b}{b+m}\ge1+\frac{m}{b+m}+\frac{b}{b+m}=1+\frac{m+b}{b+m}\)

           \(=1+1=2\)

Vậy \(\frac{a}{b}+\frac{a}{b}\ge2\) (dấu = \(\Leftrightarrow\) m = 0\(\Leftrightarrow\) a = b)

14 tháng 2 2018

        \(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\)\(\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

          \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)

\(\Rightarrow\)\(\frac{a+b}{b}=\frac{c+d}{d}\)

14 tháng 2 2018

cảm ơn bạn nhé

13 tháng 8 2017

Bài 3:
Áp dụng bất đẳng thức \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\) có:
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}-3\)

\(=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)-3\)

\(\ge\left(a+b+c\right)\left(\dfrac{9}{2\left(a+b+c\right)}\right)-3\)

\(=\dfrac{9}{2}-3=1,5\)

Dấu " = " khi a = b = c

Bài 5:

Áp dụng bất đẳng thức AM - GM có:
\(a^2+b^2+c^2+d^2\ge2ab+2cd\ge4\sqrt{abcd}\)

Dấu " = " khi a = b = c = d = 1

13 tháng 8 2017

7) VP phải là abc nha

\(\left(b+c-a\right)\left(b+a-c\right)=b^2-\left(c-a\right)^2\le b^2\)

\(\left(c+a-b\right)\left(c+b-a\right)=c^2-\left(a-b\right)^2\le c^2\)

\(\left(a+b-c\right)\left(a+c-b\right)=a^2-\left(b-c\right)^2\le a^2\)

Nhân từng vế của 3 BĐT trên

\(\left[VT\right]^2\le VP^2\)

Các biểu thức trong ngoặc vuông đều dương nên khai phương ta được đpcm

Đẳng thức xảy ra khi và chỉ khi a=b=c