E=1/2+1/6+1/12+1/20+1/42+........+1/110
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{110}\)
\(=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{10\times11}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\)
\(=1-\frac{1}{11}\)
\(=\frac{10}{11}\)
Đặt A=\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{110}\)
=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{10.11}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{10}-\frac{1}{11}\)
=\(1-\frac{1}{11}\)
=\(\frac{10}{11}\)
Vậy...
B = 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + ... + 1/110
B = 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + .... + 1/10.110
B = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + ... + 1/10 - 1/11
B = 1 - 1/11
B = 10/11
B = 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + .... + 1/110
=1/1x2 + 1/2x3 + 1/ 3x4 + 1/4x5 + 1/5 x6 + 1/ 6x 7 +.....+ 1/10 x11
=1-1/2 + 1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7 +......+ 1/10 - 1/11
= 1 + (1/2-1/2)+(1/3-1/3)+(1/4-1/4)+(1/5-1/5)+(1/6-1/6)+.....+(1/10-1/10)-1/11
= 1- 1/11=10/11
Vậy B = 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + .... + 1/110 = 10/11
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{90}+\frac{1}{110}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{9.10}+\frac{1}{10.11}\)
=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...\frac{1}{7}-\frac{1}{8}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(=1-\frac{1}{8}+\frac{1}{9}-\frac{1}{11}\)
\(=\frac{709}{792}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{90}+\frac{1}{110}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{9.10}+\frac{1}{10.11}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)\(=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}+\frac{1}{110}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{9.10}+\frac{1}{10.11}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\)
Đặt A = \(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{90}+\frac{1}{110}\)
A=\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{9.10}+\frac{1}{10.11}\)
A=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
A=\(\frac{1}{2}-\frac{1}{11}\)
A=\(\frac{9}{22}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+.......+\frac{1}{90}+\frac{1}{110}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...........+\frac{1}{9.10}+\frac{1}{10.11}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...........+\frac{1}{10}-\frac{1}{11}\)
\(=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\)
Tổng quát: \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+..+\frac{1}{110}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+....+\frac{1}{10.11}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{10}-\frac{1}{11}\)
\(=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\)
Ta có: \(\frac{1}{6}+\frac{1}{12}+....+\frac{1}{110}\)
\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{10.11}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{10}-\frac{1}{11}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+........+\frac{1}{110}\)
\(=\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+.......+\frac{1}{10\times11}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{10}-\frac{1}{11}\)
\(=\frac{1}{2}-\frac{1}{11}\)
\(=\frac{11}{22}-\frac{2}{22}\)
\(=\frac{9}{22}\)
1 / 12 + 1 / 20 + 1 / 30 + 1 / 42 + 1 / 56 + 1 / 72 + 1 / 90 + 1 / 110 + 1 / 132 =
(2 310 * 1) / (2 310 * 12) + (1 386 * 1) / (1 386 * 20) + (924 * 1) / (924 * 30) + (660 * 1) / (660 * 42) + (495 * 1) / (495 * 56) + (385 * 1) / (385 * 72) + (308 * 1) / (308 * 90) + (252 * 1) / (252 * 110) + (210 * 1) / (210 * 132) =
2 310 / 27 720 + 1 386 / 27 720 + 924 / 27 720 + 660 / 27 720 + 495 / 27 720 + 385 / 27 720 + 308 / 27 720 + 252 / 27 720 + 210 / 27 720 =
( 2 310 + 1 386 + 924 + 660 + 495 + 385 + 308 + 252 + 210 ) / 27 720 = 6 930 / 27 720
Đề thiếu chắc mk làm máy bài này rồi !
A=1/(2*3)+1/(3*4)+1/(4*5)+1/(5*6)+...+1/(10*11)
A=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+...+1/10-1/11
A=1/2-1/11
A=9/22
\(B=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{90}+\frac{1}{110}\)
\(B=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{9.10}+\frac{1}{10.11}\)
\(B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{9}-\frac{1}{10}\)\(+\frac{1}{10}-\frac{1}{11}\)
\(B=\frac{1}{2}-\frac{1}{11}\)
\(B=\frac{9}{22}\)
Thôi chết! Ở hàng thứ 3 của bài Mình có ghi 1/2 - 1/3 + 1/3 - 1/4 +1/4 - 1/5 .... nha bạn! Không phải bằng đâu ^.^
\(E=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+...+\dfrac{1}{110}\)
\(=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{10.11}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{10}-\dfrac{1}{11}\)
\(=1-\dfrac{1}{11}\)
\(=\dfrac{10}{11}\)
#TiendatzZz
là hỏi j bạn