K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ta có: \(AM=MB=\dfrac{AB}{2}\)

\(BN=NC=\dfrac{BC}{2}\)

mà AB=BC

nên AM=MB=BN=NC

Xét ΔMBC vuông tại B và ΔNCD vuông tại C có

MB=NC

BC=CD

Do đó: ΔMBC=ΔNCD

=>\(\widehat{MCB}=\widehat{NDC}\)

mà \(\widehat{NDC}+\widehat{DNC}=90^0\)(ΔNCD vuông tại C)

nên \(\widehat{MCB}+\widehat{DNC}=90^0\)

=>CM\(\perp\)DN tại I

=>ΔCIN vuông tại I

b: \(CN=\dfrac{CB}{2}=\dfrac{a}{2}\)

ΔNCD vuông tại C

=>\(DC^2+CN^2=DN^2\)

=>\(DN^2=\dfrac{a^2}{4}+a^2=\dfrac{5}{4}a^2\)

=>\(DN=\dfrac{a\sqrt{5}}{2}\)

Ta có: ΔNCD vuông tại C

=>\(S_{CND}=\dfrac{1}{2}\cdot CD\cdot CN=\dfrac{1}{2}\cdot a\cdot\dfrac{a}{2}=\dfrac{a^2}{4}\)

Xét ΔNCD vuông tại C và ΔNIC vuông tại I có

\(\widehat{CND}\) chung

Do đó: ΔNCD~ΔNIC

=>\(\dfrac{S_{NCD}}{S_{NIC}}=\dfrac{ND}{NC}=\dfrac{a\sqrt{5}}{2}:\dfrac{a}{2}=\sqrt{5}\)

=>\(S_{NIC}=\dfrac{a^2}{4\sqrt{5}}\)

4 tháng 4 2019

bạn gửi câu a cho mk đi

7 tháng 4 2019

Câu a đây Đệ Ngô!

a. CM: AM = BM = BN = NC (1/2AB = 1/2BC)

Cm: Tam giác MBC = tam giác NCD (c-g-c)

=> góc BMC = góc CND

Mà tam giác BMC vuông tại B

=> BMC + BCM = 900

=> CND + BCM = 900

=> Tam giác CIN vuông tại I.

12 tháng 11 2015

tự vẽ hình nha 

lấy Q trung điểm CD

kẻ AQ =>AQ song song CM 

cm AQ vuông góc DN {tự cm}

tam giác DCI có AQ song song CM nên \(\frac{DQ}{QC}=\frac{DE}{EI}\) với E là giao điểm ND và AQ

tam giác ĐẠI có ĐỀ là đường cao và trung tuyến nên là tam giác vuông

tick nha 

 

17 tháng 2 2019

đề bài sai rồi bn mk vẽ hình cho bn xem nè

M, N là td cùa AB,AC nhưng tam giác CIN ko vuông

A B M C D N I

11 tháng 12 2018

c) Vẽ AO vuông góc với DI, AO cắt DC tại G. Nối MG.

Ta có AB//DC (M thuộc AB, G thuộc DC)

=>AM//GC.(1)

Ta có AG vuông góc với DI tại O, MC vuông góc với DI tại I

=>AG//MC.(2)

(1),(2)=>^AMG=^MGC, ^AGM=^GMC

=>​Tam giác AMG=Tam Giác CGM (G-C-G)

=>AM=GC,DG=MB

Mà AM=MB=>DG=GC

=>G là trung điểm DC => Tam giác DGI cân tạiG

=>Đường cao GO cũng là trung tuyến

=>DO=OI

Tương Tự tam giác AID có đường cao cũng là trung tuyến

=>AID cân tại A

6 tháng 1 2017

Xét 2 tam giác vuông BMC và CND có : 
BM=CN (bằng nửa cạnh hình vuông); BC=CD 
=> Tam giác BMC = Tam giác CND (c.g.c) 
=> Góc BCM = Góc CDN 
mà Góc BCM + góc DCM = 90 độ 
=> Góc CDN + Góc DCN = 90 độ 
=> Tam giác CDI vuông tại I 
=> CM vuông góc với DN 

Gọi P là trung điểm của CD, AP cắt DN tại H 
Ta có PC= 1/2 DC 
mà AM = 1/2 AB 
lại có AB=CD (vì ABCD là hình vuông) 
=> AM=PC 
mặt khác AM // PC (vì AB // CD) 
=> AMCP là hình bình hành 
=> AP // CM 
mà CM vuông góc với DN (cmt) 
=> AP vuông góc với DN tại H 
Tam giác CDI có CP= DP, PH // CI (vì AP // CM) 
=> DH=HI 
Tam giác ADI có AH là đường cao (vì AH vuông góc với DI) 
AH là trung tuyến (vì DH= HI) 
=> Tam giác ADI cân tại A 
=> AI = AD