Cho hình thang ABCD. Đáy lớn AD. Từ B kẻ đường thẳng song song với CD cắt AC tại F, đường thẳng dựng từ C song song với AB cắt BD tại F. CMR: EF // BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác AFCD có
AF//CD(AB//CD, F∈AB)
AD//CF(gt)
Do đó: AFCD là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Xét tứ giác DCBK có
DC//BK(DC//AB, K∈AB)
DK//CB(gt)
Do đó: DCBK là hình bình hành(Dấu hiệu nhận biết hình bình hành)
a) Do CD // AB, DM // BD nên ta dễ thấy : \(\Delta DMC\)đồng dạng với \(\Delta MCA\left(g.g\right)\)
\(\Rightarrow\frac{MC}{CA}=\frac{CD}{AB}=\frac{AF}{AB}\)( vì ADCF là hình bình hành nên CD = AF ) (1)
Lại có : FP // AC nên : \(\frac{CP}{CB}=\frac{AF}{AB}\left(2\right)\)
Từ (1) và (2) => \(\frac{CM}{CA}=\frac{CP}{CB}\)
Theo định lí Ta-let đảo, ta có : MP // AB
b) Gọi N và N' là giao điểm MP,DB với CF
Ta có : \(\frac{CN}{CF}=\frac{CM}{CA}=\frac{CD}{AB}\)(ở phần a)
\(\frac{CN'}{N'F}=\frac{CD}{FB}\Rightarrow\frac{AN'}{CF}=\frac{CD}{\left(FB+CD\right)}=\frac{CD}{AB}\)( vì CD = AF )
Vậy CN = CN' nên N' trùng N
Từ đó, ta suy ra được : MP, CF, DB đồng quy
a) Xét tam giác \(ADC\) có \(OF//DC\), theo định lí Thales ta có:
\(\frac{{AF}}{{AD}} = \frac{{AO}}{{AC}}\) (1)
Xét tam giác \(ABC\) có \(OE//BC\), theo định lí Thales ta có:
\(\frac{{AE}}{{AB}} = \frac{{AO}}{{AC}}\) (2)
Từ (1) và (2) suy ra, \(\frac{{AF}}{{AD}} = \frac{{AE}}{{AB}}\)
Xét tam giác \(ABD\) có:
\(\frac{{AF}}{{AD}} = \frac{{AE}}{{AB}}\)
Theo định lí Thales đảo suy ra \(EF//BD\).
b) Xét tam giác \(ADC\) có \(OH//AD\), theo định lí Thales ta có:
\(\frac{{CH}}{{CD}} = \frac{{CO}}{{AC}}\) (3)
Xét tam giác \(ABC\) có \(OG//AB\), theo định lí Thales ta có:
\(\frac{{CG}}{{BC}} = \frac{{CO}}{{AC}}\) (4)
Từ (3) và (4) suy ra, \(\frac{{CH}}{{CD}} = \frac{{CG}}{{BC}}\)
Theo định lí Thales đảo suy ra \(GH//BD\).
Xét tam giác \(BCD\) có \(GH//BD\), theo định lí Thales ta có:
\(\frac{{CH}}{{DH}} = \frac{{CG}}{{BG}} \Rightarrow CH.BG = DH.CG\) (điều phải chứng minh).
a: Xét ΔADC có OF//DC
nên AF/AD=AO/AC
Xét ΔABC có EO//BC
nên AE/AB=AO/AC
=>AF/AD=AE/AB
=>EF//BD
b: OH//AD
=>CH/CD=CO/CA
OG//AB
=>CG/BC=CO/CA
=>CG/BC=CH/CD
=>GH//BD
=>CH/DH=CG/BG
=>CH*BG=DH*CG