Cho tam giác ABC, Lấy M bất kì trên BC, kẻ MC // AC, MF// AB ( E thuộc AB, F thuộc AC). Xác định vị trí M để
a) Tổng diện tích tam giác MBE và tam giác MBF nhỏ nhất
b) Diện tích tứ giác AEMF lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Do ME // AC nên \(\frac{ME}{AC}=\frac{BM}{BC}\); MF // AB nên \(\frac{MF}{AB}=\frac{MC}{BC}\)
Từ đó suy ra \(\frac{ME}{AC}+\frac{MF}{AB}=\frac{BM+MC}{BC}=1\) không đổi.
b. Gọi \(\frac{ME}{AC}=t\Rightarrow\frac{MF}{AB}=1-t\Rightarrow S_{ABC}=\frac{a^2}{t^2}=\frac{b^2}{\left(1-t\right)^2}\)
\(\Rightarrow\frac{a}{t}=\frac{b}{1-t}\Rightarrow a\left(1-t\right)=bt\Rightarrow t=\frac{a}{a+b}\Rightarrow t^2=\frac{a^2}{\left(a+b\right)^2}\Rightarrow S_{ABC}=\frac{a^2}{t^2}=\left(a+b\right)^2.\)
c. \(S_{AEMF}=S_{ABC}-S_{BME}-S_{CMF}=\left(a+b\right)^2-a^2-b^2\)
\(=2ab\le a^2+b^2\)
Dấu bằng xảy ra khi a = b, tức là M là trung điểm BC.
Tứ giác BEMF là hình bình hành ( hai cặp cạnh đối song song) |
Kẻ AH vuông góc BC tại H , AH cắt MF tại G. Ta có diện tích ABC=1/2AH*BC và S bemf=fm*gh nên Sbemf/Sabc=2*HG/AH*FM/BC |
Gọi AM = x; MC = y thìAC = x + y Xét tam giácABC có MF // BC (gt)FM/BC=AM/AC ( hệ quả định lí Talet) Thì FM/BC=x/x+y |
Xét tam giácAHC có GM //HCthì HG/AH=CM/AC ( định lí Talet) HG/AH=x/x+y |
Do đó Sbefm/Sabc=2*xy/(x+y)^2 Ta có : (x-y)^2>=0thif(x+y)^2>=4xy thì xy/(x+y)^2<=1/4 |
Sbemf/Sabc<=2*1/4hay Sbemf<=1/2Sabc |
Mà Sabc không đổi nên Sbemf đạt giá trị lớn nhất là 1/2Sabc khi và chỉ khi x=y Hay M là trung điểm của AC. Gõ mỏi tay ko biết đc j ko-_- |
Câu c có khá nhiều cách giải,nhưng mình trình bày 1 cách thôi nhá :)
Câu c là lấy H đối xừng với B qua M,Kẻ đường thẳng song song với AE vắt EM,AF lần lượt tại V và W ạ
có ai on ko nó chuyện vs mih chứ ai đng xem bóng đá thì cứ xem
a) Xét tứ giác AEMF có
\(\widehat{EAF}=90^0\)(\(\widehat{BAC}=90^0\), E∈AB, F∈AC)
\(\widehat{AEM}=90^0\)(ME⊥AB)
\(\widehat{AFM}=90^0\)(MF⊥AC)
Do đó: AEMF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=5^2+12^2=169\)
\(\Leftrightarrow BC=\sqrt{169}=13cm\)
Ta có: ΔABC vuông tại A(gt)
mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)
nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
hay \(AM=\dfrac{13}{2}=6.5cm\)
Ta có: AEMF là hình chữ nhật(cmt)
nên AM=EF(Hai đường chéo của hình chữ nhật AEMF)
mà AM=6,5cm
nên EF=6,5cm
Vậy: EF=6,5cm
c) Xét ΔABC có
M là trung điểm của BC(gt)
ME//AC(ME//AF, C∈AF)
Do đó: E là trung điểm của AB(Định lí 1 đường trung bình của tam giác)
⇒\(AE=\dfrac{AB}{2}=\dfrac{5}{2}=2.5cm\)
Xét ΔABC có
M là trung điểm của BC(gt)
MF//AB(MF//AE, B∈AE)
Do đó: F là trung điểm của AC(Định lí 1 đường trung bình của tam giác)
⇒\(AF=\dfrac{AC}{2}=\dfrac{12}{2}=6cm\)
Ta có: AEMF là hình chữ nhật(cmt)
nên \(S_{AEMF}=AE\cdot AF=2.5\cdot6=15cm^2\)
Ta đặt: \(S_{BEMF}=S_1;S_{ABC}=S\)
Kẻ \(AK\perp BC\) ; \(AK\) cắt \(EM\left\{H\right\}\)
Ta có: \(S_1=EM.HK\)
\(\Leftrightarrow S=\dfrac{1}{2}BC.AK\)
\(\Leftrightarrow\dfrac{S_1}{S}=2\dfrac{EM}{BC}.\dfrac{KH}{AK}\)
Đặt \(MA=x;MC=y\) . Theo định lý Thales ta có:
\(\dfrac{EM}{BC}=\dfrac{x}{x+y};\dfrac{HK}{AK}=\dfrac{x}{x+y}\)
\(\Leftrightarrow\dfrac{S_1}{S}=\dfrac{2xy}{\left(x+y\right)^2}\)
Áp dụng bất đẳng thức Cosi dạng \(\dfrac{ab}{\left(a+b\right)^2}\le\dfrac{1}{4}\) ta được:
\(\dfrac{S_1}{S}=\dfrac{2xy}{\left(x+y\right)^2}\le\dfrac{1}{2}\) hay \(S_1\le\dfrac{1}{2}S\)
\(\Leftrightarrow MaxS_1=\dfrac{1}{2}S\)
\(\Leftrightarrow\) \(M\) là trung điểm của \(AC\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)