Mn giải giúp em với ạ :
Có góc nhọn a ,Cosa - sina = 1/5 . Tính cota
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\cos a-\sin a=\dfrac{1}{5}\\ \Leftrightarrow\left(\cos a-\sin a\right)^2=\dfrac{1}{25}\\ \Leftrightarrow1-2\sin a\cos a=\dfrac{1}{25}\\ \Leftrightarrow2\sin a\cos a=\dfrac{24}{25}\)
Mà \(\cos a=\dfrac{1}{5}+\sin a\)
\(\Leftrightarrow2\sin a\left(\dfrac{1}{5}+\sin a\right)=\dfrac{24}{25}\\ \Leftrightarrow\dfrac{2}{5}\sin a+2\sin^2a-\dfrac{24}{25}=0\\ \Leftrightarrow\left[{}\begin{matrix}\sin a=\dfrac{3}{5}\\\sin a=-\dfrac{4}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\cos a=\dfrac{4}{5}\\\cos a=-\dfrac{3}{5}\end{matrix}\right.\\ \Leftrightarrow\cot a=\dfrac{4}{5}\cdot\dfrac{5}{3}=\dfrac{4}{3}\)
Bài 2:
\(\cos\widehat{A}=\dfrac{3\sqrt{39}}{20}\)
\(\tan\widehat{A}=\dfrac{7}{20}:\dfrac{3\sqrt{39}}{20}=\dfrac{7}{3\sqrt{39}}=\dfrac{7\sqrt{39}}{117}\)
\(\cot\widehat{A}=\dfrac{3\sqrt{39}}{7}\)
a) Có: `1+tan^2a=1/(cos^2a)`
`<=> 1+(3/5)^2=1/(cos^2a)`
`=> cosa=\sqrt10/4`
`=> sina = \sqrt(1-cos^2a) = \sqrt6/4`
b) Có: `sin^2a + cos^2a=1`
`<=> sin^2a + (1/4)^2=1`
`=> sina=\sqrt15/4`
`=> tana = (sina)/(cosa) = \sqrt15`
Má ơi,tính sai:
a)\(\left[{}\begin{matrix}cos\alpha=\dfrac{5\sqrt{34}}{34}\\cos\alpha=\dfrac{-5\sqrt{34}}{34}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}sin\alpha=cos\alpha.tan\alpha=\dfrac{3\sqrt{34}}{34}\\sin\alpha=cos\alpha.tan\alpha=\dfrac{-3\sqrt{34}}{34}\end{matrix}\right.\)
b)\(\left[{}\begin{matrix}sin\alpha=\dfrac{\sqrt{15}}{4}\\sin\alpha=\dfrac{-\sqrt{15}}{4}\end{matrix}\right.\)\(\left[{}\begin{matrix}tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\sqrt{15}\\tatn\alpha=-\sqrt{15}\end{matrix}\right.\)
\(\sin^2\widehat{A}+\cos^2\widehat{A}=1\Leftrightarrow\cos^2\widehat{A}=1-\left(\dfrac{3}{5}\right)^2=1-\dfrac{9}{25}=\dfrac{16}{25}\\ \Leftrightarrow\cos\widehat{A}=\dfrac{4}{5}\\ \tan\widehat{A}=\dfrac{\sin\widehat{A}}{\cos\widehat{A}}=\dfrac{3}{4}\\ \Rightarrow\cot\widehat{A}=\dfrac{1}{\tan\widehat{A}}=\dfrac{4}{3}\)
xét cos a - sin a = 1/5
=> (cos a - sin a)^2 = 1/25
<=> (cos a)^2 + (sin a)^2 - 2cosasina = 1/25
xét (cos a)^2 + (sin a)^2 =1 => -2(cos a)(sin a) = 1/25 - 1 = -24/25
=> (cos a)(sin a) = 12/25
=> cos a = 12/(25.sin a)
sau đó thay vào pt ban đầu cos a - sin a = 1/5
<=> - (sin a)^2 -1/5sina + 12/25 =0
Giải pt bậc 2 dc 2 nghiệm 1 am 1 dương thì bạn lấy nghiệm dương do a là góc nhọn