cho đoạn thẳng AB và điểm M nằm giữa A và B. Trên cùng một nửa mặt phẳng có bờ là đường thẳng AB, vẽ các tam giác đều : MAC và MBD, Các tia AC và BD cắt nhau tại O. chứng minh: a. tam giác AOB đều b. MC=OD, MD=OC c. AD=BC d. gọi i và K lần lượt là trung điểm của AD và BC. chứng minh : Mi = MK và tam giác MIK
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
CT
27 tháng 2 2020
a, ta cs: tam giác AOB cs: ^A=^B=60 độ
tứ giác OCMD là hbh-> OA=OB=> tam giác OAB cân
=> tam giác đều
CT
27 tháng 2 2020
b, ta cs: tứ giác OCMD cs: ^O=^CMD= 60 độ và ^OCM=^ODM=120 độ
=> hbh
=> OD=MC, OC=MD
a) MAC đều => góc MAC = 60, MBD đều => góc MBD = 60
=> AOB là tam giác cân ( vì có 2 góc ở đáy = nhau )
mà 2 góc ở đáy lại = 60 => tam giác đều
b) AOB đều => 3 cạnh bằng nhau => AB = OB
AB = AM + MB
OB = OD + DB
mà AB = OB, MB = DB
=> AM = OD, mà AM = MC => MC = OD
MD = OC chứng minh tương tự
c) Xét tam giác ABD và tam giác BOC:
AB = BO
góc ABD = góc BOC = 60
BD = OC
=> ABD = BOC ( c.g.c )
=> AD = BC
d) ABD = BOC ( cm câu c ) => góc BAD = góc OBC
Ta có : MC = OD, MD = OC ( cm câu b ) => MCOD là hbh => MC // OD <=> MC // OB => góc MCK = góc OBC
=> góc BAD = góc MCK
Vì AD = BC, AI = 1/2 AD, CK = 1/2 BC => AI = CK
Xét tam giác MAI và tam giác MCK:
MA = MC
góc BAD = góc MCK
AI = CK
=> MAI = MCK ( c.g.c ) => MI = MK
e) góc CEA = góc BED (đối đỉnh)
Xét tam giác BED: BED + EDB + EBD = 180
Xét tam giác ABD: BAD + ABD + ADB = 180 <=> BAD + ADB = 120
mà có góc EBD = góc BAD ( vì tam giác ABD = tam giác BOC )
=> EDB + EBD = 120 => BED = 60 => CEA = 60
hinh bn oi