Cho đại lượng y tỉ lệ thuận với đại lượng x. Biết rằng với hai giá trị x1, x2 của x có x1 – x2 = 1 thì hai giá trị tương ứng y1, y2 của y có y1 – y2 = 4. Khi đó x và y liên hệ với nhau bởi công thức?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: x và y tỉ lệ thuận nên \(\dfrac{x_1}{y_1}=\dfrac{x_2}{y_2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x_1}{y_1}=\dfrac{x_2}{y_2}=\dfrac{x_1+x_2}{y_1+y_2}=\dfrac{6}{-2}=-3\)
=>x=-3y
b: x=-3y
=>\(y=-\dfrac{1}{3}x\)
Thay x=2 vào \(y=-\dfrac{1}{3}x\), ta được:
\(y=-\dfrac{1}{3}\cdot2=-\dfrac{2}{3}\)
Thay x=4 vào \(y=-\dfrac{1}{3}x\), ta được:
\(y=-\dfrac{1}{3}\cdot4=-\dfrac{4}{3}\)
a: x và y tỉ lệ thuận
=>x1/y1=x2/y2
=>y1/x1=y2/x2=(y1-y2)/(x1-x2)=-3/12=-1/4
=>y1/x1=-1/4; y2/x2=-1/4
=>y=-1/4x
Hệ số tỉ lệ là k=-1/4
b: y=-1/4x
c: Khi x=-2 thì y=-1/4*(-2)=1/2
Khi x=-4 thì y=-1/4*(-4)=1
a) hệ số tỉ lệ k = -1/4.
b) y = -1/4x.
c) y = 1/2 khi x = -2.
y = 1 khi x = -4.
cho x và y là hai đại lượng tỉ lệ thuận, biết rằng hai giá trị bất kì x1,x2 của x có tổng bằng 1, hai giá trị tương ứng y1,y2 của y có tổng bằng 5
a, hãy biểu diễn y theo x
b, tính giá trị của x khi y=-4 , y= -1 và 1 phần 2
c, giá trị của y khi x=-4, x=0,5
ht
cho x và y là hai đại lượng tỉ lệ thuận, biết rằng hai giá trị bất kì x1,x2 của x có tổng bằng 1, hai giá trị tương ứng y1,y2 của y có tổng bằng 5
a, hãy biểu diễn y theo x
b, tính giá trị của x khi y=-4 , y= -1 và 1 phần 2
Lời giải:
Gọi $k$ là hệ số tỉ lệ của $y$ so với $x$. Ta có: $y=kx$. Thay $x_1,x_2,y_1,y_2$ thì:
$y_1=kx_1$
$y_2=kx_2$
$\Rightarrow y_1-y_2=kx_1-kx_2$
$\Rightarrow 4=k(x_1-x_2)=k.1=k$
$\Rightarrow y=kx=4x$