giải các bất phương trình
a) 2x + 6 < 6x - 5
b) (-7x)-6 > 5 + 7x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>7x=63
hay x=9
b: =>3x=-15
hay x=-5
d: =>-6x=-16
hay x=8/3
a) \(7x=63\Leftrightarrow x=9\)
b) \(3x=-15\Leftrightarrow x=-5\)
c) \(2x-5=0\Leftrightarrow2x=5\Leftrightarrow x=\dfrac{5}{2}\)
d) \(-6x=-16\Leftrightarrow x=\dfrac{8}{3}\)
Ta có: -2 – 7x > (3 + 2x) – (5 – 6x) ⇔ -2 – 7x > 3 + 2x – 5 + 6x
⇔ -7x – 2x – 6x > 3 – 5 + 2
⇔ -15x > 0 ⇔ x < 0
Vậy tập nghiệm của bất phương trình là: {x|x < 0}
a: =>(x-1)(x+1)(x-2)(x+2)=0
hay \(x\in\left\{1;-1;2;-2\right\}\)
b: \(\Leftrightarrow\sqrt{x}-6=0\)
hay x=36
c: =>(2x+1)(2x-1)=0
hay \(x\in\left\{-\dfrac{1}{2};\dfrac{1}{2}\right\}\)
a: =>10x-14=15-9x
=>19x=29
hay x=29/19
b: \(\Leftrightarrow3\left(10x+3\right)=36+4\left(8x+6\right)\)
=>30x+9=36+32x+24
=>30x+9=32x+60
=>-2x=51
hay x=-51/2
c: \(\Leftrightarrow5\left(7x-1\right)+60x=6\left(16-x\right)\)
=>35x-5+60x=96-6x
=>101x=101
hay x=1
d: \(\Leftrightarrow12\left(\dfrac{1}{2}-\dfrac{3}{2}x\right)=-5x+6\)
\(\Leftrightarrow6-18x+5x-6=0\)
=>-13x=0
hay x=0
\(a,\dfrac{5x-7}{3}=\dfrac{5-3x}{2}\\ \Leftrightarrow2\left(5x-7\right)=3\left(5-3x\right)\\ \Leftrightarrow10x-14=15-9x\\ \Leftrightarrow10x-14-15+9x=0\\ \Leftrightarrow19x-19=0\\ \Leftrightarrow x=1\)
\(b,\dfrac{10x+3}{12}=1+\dfrac{6+8x}{9}\\ \Leftrightarrow\dfrac{3\left(10x+3\right)}{36}=\dfrac{36}{36}+\dfrac{4\left(6+8x\right)}{36}\\ \Leftrightarrow30x+9=36+24+32x\\ \Leftrightarrow36+24+32x-30x-9=0\\ \Leftrightarrow2x+51=0\\ \Leftrightarrow x=-\dfrac{51}{2}\)
\(c,\dfrac{7x-1}{6}+2x=\dfrac{16-x}{5}\\ \Leftrightarrow\dfrac{7x-1+12x}{6}=\dfrac{16-x}{5}\\ \Leftrightarrow5\left(19x-1\right)=6\left(16-x\right)\\ \Leftrightarrow95x-5=96-6x\\ \Leftrightarrow95x-5-96+6x=0\\ \Leftrightarrow101x-101=0\\ \Leftrightarrow x=1\)
\(d,4\left(0,5-1,5x\right)=-\dfrac{5x-6}{3}\\ \Leftrightarrow12\left(0,5-1,5x\right)=6-5x\\ \Leftrightarrow6-18x=6-5x\\ \Leftrightarrow6-5x-6+18x=0\\ \Leftrightarrow13x=0\\ \Leftrightarrow x=0\)
a) Đặt \(x^2=a\left(a\ge0\right)\)
Ta có: \(2x^4-7x^2+4=0\)
Suy ra: \(2a^2-7a+4=0\)
\(\Delta=49-4\cdot2\cdot4=49-32=17\)
Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}a_1=\dfrac{7-\sqrt{17}}{4}\left(nhận\right)\\a_2=\dfrac{-7+\sqrt{17}}{4}\left(loại\right)\end{matrix}\right.\)
Suy ra: \(x^2=\dfrac{7-\sqrt{17}}{4}\)
\(\Leftrightarrow x=\pm\dfrac{\sqrt{7-\sqrt{17}}}{2}\)
Vậy: \(S=\left\{\dfrac{\sqrt{7-\sqrt{17}}}{2};-\dfrac{\sqrt{7-\sqrt{17}}}{2}\right\}\)
a)
$2x+6=0$
$2x=-6$
$x=-3$
b) $4x+20=0$
$4x=-20$
$x=-5$
c)
$2(x-1)=5x-7$
$2x-2=5x-7$
$3x=5$
$x=\frac{5}{3}$
d) $2x-3=0$
$2x=3$
$x=\frac{3}{2}$
e)
$3x-1=x+3$
$2x=4$
$x=2$
f)
$15-7x=9-3x$
$6=4x$
$x=\frac{3}{2}$
g) $x-3=18$
$x=18+3=21$
h)
$2x+1=15-5x$
$7x=14$
$x=2$
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)