K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2024

h

a: f(-2)=4+3=7

f(-1)=2+3=5

f(0)=3

f(1/2)=-1+3=2

f(-1/2)=1+3=4

b: g(-1)=1-1=0

f(0)=0-1=-1

14 tháng 12 2017

a) Thay f(-2) vào hàm số ta có :

y=f(-2)=(-2).(-2)+3=7

Thay f(-1) vào hàm số ta có :

y=f(-1)=(-2).(-1)+3=5

Thay f(0) vào hàm số ta có :

y=f(0)=(-2).0+3=1

Thay f(-1/2) vào hàm số ta có :

y=f(-1/2)=(-2).(-1/2)+3=4

Thay f(1/2) vào hàm số ta có :

y=f(1/2)=(-2).1/2+3=2

b) Thay g(-1) vào hàm số ta có :

y=g(-1)=(-1)2-1=0

Thay g(0) vào hàm số ta có :

y=g(0)=02-1=-1

Thay g(1) vào hàm số ta có :

y=g(1)=12-1=0

Thay g(2) vào hàm số ta có :

y=g(2)=22-1=3

14 tháng 12 2017

y ;jfjnvyh;fjjfy f,.hgdbn<hgy>33<-66475>

6 tháng 12 2021

      Giải:

Bài 1: lần lượt thay các giá trị của x, ta có:

_Y=f(-1)= -5.(-1)-1=4

_Y=f(0)= -5.0-1=1

_Y=f(1)= -5.1-1=-6

_Y=f(1/2)= -5.1/2-1=-7/2

 

6 tháng 12 2021

 Bài 2:

 Lần lượt thay các giá trị của x, ta có:

_Y=f(-2)=-2.(-2)+3=7

_Y=f(-1)=-2.(-1)+3=1

_Y=f(0)=-2.0+3=3

_Y=f(-1/2)=-2.(-1/2)+3=4

_Y=f(1/2)=-2.1/2+3=2

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

• Xét hàm số \(f\left( x \right) = 2x - \sin x\) có tập xác định \(D = \mathbb{R}\).

Vậy hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\).

• Xét hàm số \(g\left( x \right) = \sqrt {x - 1} \)

ĐKXĐ: \(x - 1 \ge 0 \Leftrightarrow x \ge 1\)

Hàm số \(g\left( x \right) = \sqrt {x - 1} \) có tập xác định \(D = \left[ {1; + \infty } \right)\).

Hàm số \(g\left( x \right) = \sqrt {x - 1} \) là hàm căn thức nên liên tục trên khoảng \(\left( {1; + \infty } \right)\).

Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \sqrt {x - 1}  = \sqrt {1 - 1}  = 0 = g\left( 1 \right)\)

Do đó hàm số \(g\left( x \right) = \sqrt {x - 1} \) liên tục tại điểm \({x_0} = 1\).

Vậy hàm số \(g\left( x \right) = \sqrt {x - 1} \) liên tục trên nửa khoảng \(\left[ {1; + \infty } \right)\).

• Xét hàm số \(y = f\left( x \right).g\left( x \right) = \left( {2x - \sin x} \right)\sqrt {x - 1} \)

Do hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) đều liên tục tại mọi điểm \({x_0} \in \left[ {1; + \infty } \right)\) nên hàm số \(y = f\left( x \right).g\left( x \right)\) liên tục trên nửa khoảng \(\left[ {1; + \infty } \right)\).

• Xét hàm số \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{{2x - \sin x}}{{\sqrt {x - 1} }}\)

Do hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) đều liên tục tại mọi điểm \({x_0} \in \left[ {1; + \infty } \right)\) nên hàm số \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}}\) liên tục trên khoảng \(\left( {1; + \infty } \right)\).

19 tháng 2 2020

Ta có :+)\(f\left(x\right)=6-4x\)

\(\implies\)\(f\left(1\right)=6-4=2\)

Ta có :+) \(f\left(x\right)=6-4x=\frac{1}{2}\)

\(\implies\)   \(x=\frac{11}{8}\)

Ta có  :+) \(g\left(x\right)=2x^2-3x\)

\(\implies\) \(g\left(-2\right)=2.\left(-2\right)^2+3.2\)

\(\implies\) \(g\left(-2\right)=4.2+3.2\)

\(\implies\) \(g\left(-2\right)=14\)

  

25 tháng 10 2021

a: TXĐ: \(D=R\backslash\left\{-\dfrac{1}{2}\right\}\)

b: TXĐ: \(D=R\backslash\left\{-3;1\right\}\)

c: TXĐ: \(D=\left[-\dfrac{1}{2};3\right]\)

19 tháng 6 2023

loading...

25 tháng 11 2019

Ảnh đẹp thì