bài 1: tìm x,y thuộc z
a,(x+4).(y+3)=3
b,(2x-5).(6y-7)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>5-x=-23
=>x=5+23=28
b: =>x-3-x+7-25+x=54
=>x-21=54
=>x=75
c: =>7-9x-2x+4=-5x-35+27-25=-5x-37
=>-11x+3=-5x-37
=>-6x=-40
=>x=20/3
a.
10-x-5 = (-5) - 7 -11
=>5-x = 0
=>x=5
b
(x-3) - (x+17-24) - (25-x) = 24 - (-30)
=>x - 3 - x - 17 + 24 - 25 - x = 24 + 30
=>-x - 21 = 54
=>-x = 75
=>x = -75
c
(7 - 9x) - (2x - 4) = - (5x + 35) - (-27) - 25
=>7-9x - 2x + 4 = -5x - 35 + 27 - 35
=>11 - 11x + 5x = -43
=>16x = 11 + 43
=>16x = 54
=>x=4
câu 1:
a) 500-(300)-190+(-210)
= 500-300-190-210
= 200 - 210 -190
=-10 - 190
=-200
b) (-3)3 .5+12.(-6)
= -27.5 -72
=-135 - 72
=-207
c) 15.(-19-4)-19.(15-4)
= 15.(-23) - 19.11
=-345 - 209
=-554
câu 2: tìm x thuộc Z
a) 3x-2=3
=> 3x=3/2
=> x=1/2
b) x chia hết cho 5 và -7<x<11
=> x thuộc {-5;0;5;10}
Câu 1:
a) Ta có: \(500-\left(300\right)-190+\left(-210\right)\)
\(=500-300-190-210\)
\(=\left(500-300\right)-\left(190+210\right)\)
\(=200-400=-200\)
b) Ta có: \(\left(-3\right)^3\cdot5+12\cdot\left(-6\right)\)
\(=\left(-3\right)^3\cdot5-3\cdot4\cdot3\cdot2\)
\(=-5\cdot3^3-3^2\cdot8\)
\(=3^2\cdot\left(-5\cdot3-8\right)\)
\(=9\cdot\left(-15-8\right)=9\cdot\left(-23\right)=-207\)
c) Ta có: \(15\cdot\left(-19-4\right)-19\cdot\left(15-4\right)\)
\(=-15\cdot19-15\cdot4-15\cdot19+19\cdot4\)
\(=-30\cdot19+4\cdot4\)
\(=-2\cdot\left(15\cdot19+2\cdot4\right)\)
\(=-2\cdot\left(285+8\right)=-586\)
a)(x+4).(y+3)=3
Th1: 3= -3 *(-1)
x+4 = -3 => x= -7
y +3 = -1 => y= -4
Th2: 3 = (-1) * (-3)
x+4 = -1 => x= -5
y+3 = -3 => y= -6
Th3: 3= 3*1
x+4 = 3 => x= -1
y + 3 = 1 => y= -2
Th4: 3= 1*3
x+4 = 1 => x= -3
y+3 = 3 => y= 0
Vậy nếu x= -7 thì y=-4
nếu x= -5 thì y =-6
nếu x= -1 thì y= -2
nếu x=-3 thì y = 0
b)(2x-5).(6y-7)
Đẳng thức này có kết quả ko bạn?
B6:
Ta có: \(\hept{\begin{cases}P\left(-1\right)=a-b+c\\P\left(-2\right)=4a-2b+c\end{cases}}\)
=> \(P\left(-1\right)+P\left(-2\right)=5a-3b+2c\)
Mà theo đề bài \(5a-3b+2c=0\)
=> \(P\left(-1\right)+P\left(-2\right)=0\Rightarrow P\left(-1\right)=-P\left(-2\right)\)
Thay vào ta được: \(P\left(-1\right).P\left(-2\right)=-P\left(-2\right).P\left(-2\right)=-P\left(-2\right)^2\le0\left(\forall a,b,c\right)\)
=> đpcm
B5:
Ta có:
P+Q+R
= 5x2y2-xy-2y3-y2+5x4-2x2y2-5xy+y3-3y2+2x4-x2y2+6xy+y3+6y2+7
= x2y2+2y2+7x4+7
Mà \(x^2y^2\ge0;2y^2\ge0;7x^4\ge0\left(\forall x,y\right)\)
=> \(x^2y^2+2y^2+7x^4+7\ge7\)
=> Tổng 3 đa thức P,Q,R luôn dương
=> Trong 3 đa thức đó luôn tồn tại 1 đa thức lớn hơn 0
=> đpcm
Bài \(3\)
\(A=\left(x-5\right)\left(2x+3\right)-2x\left(x-3\right)+x+7\)
\(=2x^2+3x-10x-15-\left(2x^2-6x\right)+x+7\)
\(=2x^2+3x-10x-15-2x^2+6x+x+7\)
\(=\left(2x^2-2x^2\right)+\left(3x-10x+6x+x\right)+\left(-15+7\right)\)
\(=-8\)
Vậy biểu thức không phụ thuộc vào biến
\(B=4\left(y-6\right)-y^2\left(2+3y\right)+y\left(5y-4\right)+3y^2\)
Đề như này à?
Bài \(4\)
\(a,4a^2-16b^2=4\left(a^2-4b^2\right)=4\left(a-2b\right)\left(a+2b\right)\)
\(b,4x^2-4x+1=\left(2x\right)^2-2.2x.1+1^2=\left(2x+1\right)^2\)
\(c,\) ?
\(d,\left(x-y\right)^2-\left(2x-y\right)^2\\ =\left[\left(x-y\right)-\left(2x-y\right)\right]\left[\left(x-y\right)+\left(2x-y\right)\right]\\ =\left(x-y-2x+y\right)\left(x-y+2x-y\right)\\ =\left(-x\right)\left(3x-2y\right)\)
\(e,8x^3-y^3=\left(2x\right)^3-y^3\\ =\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(i,3x+6y+\left(x+2y\right)\\ =3\left(x+2y\right)+\left(x+2y\right)\\ =4\left(x+2y\right)\)
\(j,ax-ay-x+y=\left(ãx-ay\right)-\left(x-y\right)\\ =a\left(x-y\right)-\left(x-y\right)=\left(x-y\right)\left(a-1\right)\)
`k,` `y` hay `y^2` ạ? vì nó mới phân tích được nhân tử.
a: Bạn ghi lại đề nha bạn
b: \(30\left(x+2\right)-6\left(x-5\right)-24x=100\)
=>\(30x+60-6x+30-24x=100\)
=>\(\left(30x-6x-24x\right)+\left(60+30\right)=100\)
=>0x=100-90=10(vô lý)
c: \(\left(x-7\right)\left(x+3\right)< 0\)
TH1: \(\left\{{}\begin{matrix}x-7>0\\x+3< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>7\\x< -3\end{matrix}\right.\)
=>\(x\in\varnothing\)
TH2: \(\left\{{}\begin{matrix}x-7< 0\\x+3>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< 7\\x>-3\end{matrix}\right.\)
=>-3<x<7
mà x nguyên
nên \(x\in\left\{-2;-1;0;1;2;3;4;5;6\right\}\)
d: -1<2x-1<4
=>\(-1+1< 2x< 4+1\)
=>0<2x<5
=>0<x<2,5
mà x nguyên
nên \(x\in\left\{1;2\right\}\)
Bài 1:
a: Ta có: 5x=4y+2x
\(\Leftrightarrow3x=4y\)
\(\Leftrightarrow\dfrac{x}{4}=\dfrac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{x+y}{4+3}=\dfrac{-56}{7}=-8\)
Do đó: x=-32; y=-24
Bài 1:
a: Ta có: 5x=4y+2x
\(\Leftrightarrow3x=4y\)
hay \(\dfrac{x}{4}=\dfrac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{x+y}{4+3}=\dfrac{-56}{7}=-8\)
Do đó: x=-32; y=-24
a, Ta có : (x + 4).(y + 3) = 3
=> x + 4 và y + 3 thuộc Ư(3) = {-3;-1;1;3}
+) x + 4 = -3 thì y + 3 = -1
=> x = -7 và y = -4
+) x + 4 = -1 thì y + 3 = -3
=> x = -5 và y = -6
+) x + 4 = 1 và y + 3 = 3
=> x = -3 và y = 0
+) x + 4 = 3 và y + 3 = 1
=> x = -1 và y = -2